版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022屆徐州市中考數(shù)學模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在一次中學生田徑運動會上,參加男子跳高的15名運動員的成績?nèi)缦卤硭荆撼煽內(nèi)藬?shù)232341則這些運動員成績的中位數(shù)、眾數(shù)分別為A.、 B.、 C.、 D.、2.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元3.中國在第二十三屆冬奧會閉幕式上奉獻了《2022相約北京》的文藝表演,會后表演視頻在網(wǎng)絡上推出,即刻轉(zhuǎn)發(fā)量就超過810000這個數(shù)用科學記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1044.如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為()A.5 B.6 C.7 D.85.下面運算結(jié)果為的是A. B. C. D.6.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°7.對于數(shù)據(jù):6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是6 B.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是7C.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是6 D.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是78.﹣的絕對值是()A.﹣ B.﹣ C. D.9.在如圖所示的計算程序中,y與x之間的函數(shù)關系所對應的圖象應為()A. B. C. D.10.cos30°的值為(
)A.1
B.
C.
D.11.方程的解是().A. B. C. D.12.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:4ax2﹣4ay2=_____.14.如圖,小明想用圖中所示的扇形紙片圍成一個圓錐,已知扇形的半徑為5cm,弧長是cm,那么圍成的圓錐的高度是cm.15.若反比例函數(shù)的圖象位于第二、四象限,則的取值范圍是__.16.反比例函數(shù)的圖象經(jīng)過點(﹣3,2),則k的值是_____.當x大于0時,y隨x的增大而_____.(填增大或減?。?7.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出2個球,都是黃球的概率為.18.分解因式:mx2﹣6mx+9m=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)全民學習、終身學習是學習型社會的核心內(nèi)容,努力建設學習型家庭也是一個重要組成部分.為了解“學習型家庭”情況,對部分家庭五月份的平均每天看書學習時間進行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:本次抽樣調(diào)查了個家庭;將圖①中的條形圖補充完整;學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù)是度;若該社區(qū)有家庭有3000個,請你估計該社區(qū)學習時間不少于1小時的約有多少個家庭?20.(6分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標;若不存在,請說明理由.21.(6分)為提高市民的環(huán)保意識,倡導“節(jié)能減排,綠色出行”,某市計劃在城區(qū)投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.今年年初,“共享單車”試點投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A,B兩車型的數(shù)量比進行投放,且投資總價值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?22.(8分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標注相應的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形.23.(8分)如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.求證:DP是⊙O的切線;若⊙O的半徑為3cm,求圖中陰影部分的面積.24.(10分)已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如圖1所示,當α=60°時,求證:△DCE是等邊三角形;(2)如圖2所示,當α=45°時,求證:=;(3)如圖3所示,當α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關系:=_____.25.(10分)光華農(nóng)機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農(nóng)機租賃公司商定的每天的租賃價格見表:每臺甲型收割機的租金每臺乙型收割機的租金A地區(qū)18001600B地區(qū)16001200(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數(shù)關系式,并寫出x的取值范圍;(2)若使農(nóng)機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設計出來;(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農(nóng)機租賃公司提一條合理化建議.26.(12分)如圖,在梯形ABCD中,AD∥BC,對角線AC、BD交于點M,點E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點F.(1)求證:;(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.27.(12分)如圖1為某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問總量的條形統(tǒng)計圖,如圖2為該網(wǎng)站本周學生日訪問量占日訪問總量的百分比統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息完成下列填空:這一周訪問該網(wǎng)站一共有萬人次;周日學生訪問該網(wǎng)站有萬人次;周六到周日學生訪問該網(wǎng)站的日平均增長率為.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)中位數(shù)和眾數(shù)的概念進行求解.【詳解】解:將數(shù)據(jù)從小到大排列為:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80眾數(shù)為:1.75;中位數(shù)為:1.1.故選C.【點睛】本題考查1.中位數(shù);2.眾數(shù),理解概念是解題關鍵.2、D【解析】
設y與x之間的函數(shù)關系式為y=kπx2,由待定系數(shù)法就可以求出解析式,再求出x=6時y的值即可得.【詳解】解:根據(jù)題意設y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【點睛】本題考查了二次函數(shù)的應用,解答時求出函數(shù)的解析式是關鍵.3、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】810000=8.1×1.
故選B.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、C【解析】
作輔助線,構(gòu)建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據(jù)點D的坐標表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標,根據(jù)三角形面積公式可得結(jié)論.【詳解】解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,設D(x,),∵四邊形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴點E的縱坐標為﹣4,當y=﹣4時,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE?BM=××4=7;故選C.【點睛】考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、反比例函數(shù)的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,學會構(gòu)建方程解決問題.5、B【解析】
根據(jù)合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方逐一計算即可判斷.【詳解】.,此選項不符合題意;.,此選項符合題意;.,此選項不符合題意;.,此選項不符合題意;故選:.【點睛】本題考查了整式的運算,解題的關鍵是掌握合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方.6、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質(zhì)的應用,能正確作出輔助線是解此題的關鍵.7、C【解析】
根據(jù)題目中的數(shù)據(jù)可以按照從小到大的順序排列,從而可以求得這組數(shù)據(jù)的平均數(shù)和中位數(shù).【詳解】對于數(shù)據(jù):6,3,4,7,6,0,1,這組數(shù)據(jù)按照從小到大排列是:0,3,4,6,6,7,1,這組數(shù)據(jù)的平均數(shù)是:中位數(shù)是6,故選C.【點睛】本題考查了平均數(shù)、中位數(shù)的求法,解決本題的關鍵是明確它們的意義才會計算,求平均數(shù)是用一組數(shù)據(jù)的和除以這組數(shù)據(jù)的個數(shù);中位數(shù)的求法分兩種情況:把一組數(shù)據(jù)從小到大排成一列,正中間如果是一個數(shù),這個數(shù)就是中位數(shù),如果正中間是兩個數(shù),那中位數(shù)是這兩個數(shù)的平均數(shù).8、C【解析】
根據(jù)負數(shù)的絕對值是它的相反數(shù),可得答案.【詳解】│-│=,A錯誤;│-│=,B錯誤;││=,D錯誤;││=,故選C.【點睛】本題考查了絕對值,解題的關鍵是掌握絕對值的概念進行解題.9、D【解析】
先求出一次函數(shù)的關系式,再根據(jù)函數(shù)圖象與坐標軸的交點及函數(shù)圖象的性質(zhì)解答即可.【詳解】由題意知,函數(shù)關系為一次函數(shù)y=-1x+4,由k=-1<0可知,y隨x的增大而減小,且當x=0時,y=4,當y=0時,x=1.故選D.【點睛】本題考查學生對計算程序及函數(shù)性質(zhì)的理解.根據(jù)計算程序可知此計算程序所反映的函數(shù)關系為一次函數(shù)y=-1x+4,然后根據(jù)一次函數(shù)的圖象的性質(zhì)求解.10、D【解析】cos30°=.故選D.11、B【解析】
直接解分式方程,注意要驗根.【詳解】解:=0,方程兩邊同時乘以最簡公分母x(x+1),得:3(x+1)-7x=0,解這個一元一次方程,得:x=,經(jīng)檢驗,x=是原方程的解.故選B.【點睛】本題考查了解分式方程,解分式方程不要忘記驗根.12、B【解析】
根據(jù)中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質(zhì)求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點睛】本題考查三角形中位線定理及相似三角形的判定與性質(zhì).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4a(x﹣y)(x+y)【解析】
首先提取公因式4a,再利用平方差公式分解因式即可.【詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.14、4【解析】
已知弧長即已知圍成的圓錐的底面半徑的長是6πcm,這樣就求出底面圓的半徑.扇形的半徑為5cm就是圓錐的母線長是5cm.就可以根據(jù)勾股定理求出圓錐的高.【詳解】設底面圓的半徑是r,則2πr=6π,∴r=3cm,∴圓錐的高==4cm.故答案為4.15、k>1【解析】
根據(jù)圖象在第二、四象限,利用反比例函數(shù)的性質(zhì)可以確定1-k的符號,即可解答.【詳解】∵反比例函數(shù)y=的圖象在第二、四象限,∴1-k<0,∴k>1.故答案為:k>1.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),熟練記憶當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限是解決問題的關鍵.16、﹣6增大【解析】
∵反比例函數(shù)的圖象經(jīng)過點(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,則y隨x的增大而增大.故答案為﹣6;增大.【點睛】本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質(zhì):(1)當k>0時,函數(shù)圖象在一,三象限,在每個象限內(nèi),y隨x的增大而減??;(2)當k<0時,函數(shù)圖象在二,四象限,在每個象限內(nèi),y隨x的增大而增大.17、【解析】
讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出2個球是黃球的概率是.
故答案為:.【點睛】本題考查了概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.18、m(x﹣3)1.【解析】
先把m提出來,然后對括號里面的多項式用公式法分解即可?!驹斀狻縨=m(=m【點睛】解題的關鍵是熟練掌握因式分解的方法。三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)200;(2)見解析;(3)36;(4)該社區(qū)學習時間不少于1小時的家庭約有2100個.【解析】
(1)根據(jù)1.5~2小時的圓心角度數(shù)求出1.5~2小時所占的百分比,再用1.5~2小時的人數(shù)除以所占的百分比,即可得出本次抽樣調(diào)查的總家庭數(shù);(2)用抽查的總?cè)藬?shù)乘以學習0.5-1小時的家庭所占的百分比求出學習0.5-1小時的家庭數(shù),再用總?cè)藬?shù)減去其它家庭數(shù),求出學習2-2.5小時的家庭數(shù),從而補全統(tǒng)計圖;(3)用360°乘以學習時間在2~2.5小時所占的百分比,即可求出學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù);(4)用該社區(qū)所有家庭數(shù)乘以學習時間不少于1小時的家庭數(shù)所占的百分比即可得出答案.【詳解】解:(1)本次抽樣調(diào)查的家庭數(shù)是:30÷=200(個);故答案為200;(2)學習0.5﹣1小時的家庭數(shù)有:200×=60(個),學習2﹣2.5小時的家庭數(shù)有:200﹣60﹣90﹣30=20(個),補圖如下:(3)學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù)是:360×=36°;故答案為36;(4)根據(jù)題意得:3000×=2100(個).答:該社區(qū)學習時間不少于1小時的家庭約有2100個.【點睛】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖及相關計算.在扇形統(tǒng)計圖中,每部分占總部分的百分比等于該部分所對應的扇形圓心角的度數(shù)與360°的比.20、(1)y=﹣x2+2x+3;(2)見解析.【解析】
(1)將B(3,0),C(0,3)代入拋物線y=ax2+2x+c,可以求得拋物線的解析式;(2)拋物線的對稱軸為直線x=1,設點Q的坐標為(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC為斜邊,AQ為斜邊,CQ時斜邊三種情況求解即可.【詳解】解:(1)∵拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3),∴,得,∴該拋物線的解析式為y=﹣x2+2x+3;(2)在拋物線的對稱軸上存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形,理由:∵拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,點B(3,0),點C(0,3),∴拋物線的對稱軸為直線x=1,∴點A的坐標為(﹣1,0),設點Q的坐標為(1,t),則AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,當AC為斜邊時,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴點Q的坐標為(1,1)或(1,2),當AQ為斜邊時,4+t2=10+t2﹣6t+10,解得,t=,∴點Q的坐標為(1,),當CQ時斜邊時,t2﹣6t+10=4+t2+10,解得,t=,∴點Q的坐標為(1,﹣),由上可得,當點Q的坐標是(1,1)、(1,2)、(1,)或(1,﹣)時,使得以A、C、Q為頂點的三角形為直角三角形.【點睛】本題考查了待定系數(shù)法求函數(shù)解析式,二次函數(shù)的圖像與性質(zhì),勾股定理及分類討論的數(shù)學思想,熟練掌握待定系數(shù)法是解(1)的關鍵,分三種情況討論是解(2)的關鍵.21、(1)本次試點投放的A型車60輛、B型車40輛;(2)3輛;2輛【解析】分析:(1)設本次試點投放的A型車x輛、B型車y輛,根據(jù)“兩種款型的單車共100輛,總價值36800元”列方程組求解可得;(2)由(1)知A、B型車輛的數(shù)量比為3:2,據(jù)此設整個城區(qū)全面鋪開時投放的A型車3a輛、B型車2a輛,根據(jù)“投資總價值不低于184萬元”列出關于a的不等式,解之求得a的范圍,進一步求解可得.詳解:(1)設本次試點投放的A型車x輛、B型車y輛,根據(jù)題意,得:,解得:,答:本次試點投放的A型車60輛、B型車40輛;(2)由(1)知A、B型車輛的數(shù)量比為3:2,設整個城區(qū)全面鋪開時投放的A型車3a輛、B型車2a輛,根據(jù)題意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整個城區(qū)全面鋪開時投放的A型車至少3000輛、B型車至少2000輛,則城區(qū)10萬人口平均每100人至少享有A型車3000×=3輛、至少享有B型車2000×=2輛.點睛:本題主要考查二元一次方程組和一元一次不等式的應用,解題的關鍵是理解題意找到題目蘊含的相等(或不等)關系,并據(jù)此列出方程組.22、(1)見解析;(2)見解析.【解析】
(1)根據(jù)題意作圖即可;
(2)先根據(jù)BD為AC邊上的中線,AD=DC,再證明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四邊形ABCE是矩形.【詳解】(1)解:如圖所示:E點即為所求;(2)證明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD為AC邊上的中線,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四邊形ABCE是平行四邊形,∵∠ABC=90°,∴平行四邊形ABCE是矩形.【點睛】本題考查了全等三角形的判定與性質(zhì)與矩形的性質(zhì),解題的關鍵是熟練的掌握全等三角形的判定與性質(zhì)與矩形的性質(zhì).23、(1)證明見解析;(2).【解析】
(1)連接OD,求出∠AOD,求出∠DOB,求出∠ODP,根據(jù)切線判定推出即可.(2)求出OP、DP長,分別求出扇形DOB和△ODP面積,即可求出答案.【詳解】解:(1)證明:連接OD,∵∠ACD=60°,∴由圓周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD為半徑,∴DP是⊙O切線.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴圖中陰影部分的面積24、1【解析】試題分析:(1)證明△CFD≌△DAE即可解決問題.(2)如圖2中,作FG⊥AC于G.只要證明△CFD∽△DAE,推出=,再證明CF=AD即可.(3)證明EC=ED即可解決問題.試題解析:(1)證明:如圖1中,∵∠ABC=∠ACB=60°,∴△ABC是等邊三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等邊三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等邊三角形.(2)證明:如圖2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四邊形ADFG是矩形,F(xiàn)C=FG,∴FG=AD,CF=AD,∴=.(3)解:如圖3中,設AC與DE交于點O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.點睛:本題考查了相似三角形綜合題、全等三角形的判定和性質(zhì)等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題,屬于中考壓軸題.25、(1)y=200x+74000(10≤x≤30)(2)有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機2臺,乙型聯(lián)合收割機28臺,其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機1臺,乙型聯(lián)合收割機29臺,其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機0臺,乙型聯(lián)合收割機30臺,其余的全派往B地區(qū);(3)派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高.【解析】
(1)根據(jù)題意和表格中的數(shù)據(jù)可以得到y(tǒng)關于x的函數(shù)關系式;
(2)根據(jù)題意可以得到相應的不等式,從而可以解答本題;
(3)根據(jù)(1)中的函數(shù)解析式和一次函數(shù)的性質(zhì)可以解答本題.【詳解】解:(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,則派往B地區(qū)x臺乙型聯(lián)合收割機為(30﹣x)臺,派往A、B地區(qū)的甲型聯(lián)合收割機分別為(30﹣x)臺和(x﹣10)臺,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由題意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x為整數(shù),∴x=28、29、30,∴有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機2臺,乙型聯(lián)合收割機28臺,其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機1臺,乙型聯(lián)合收割機29臺,其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機0臺,乙型聯(lián)合收割機30臺,其余的全派往B地區(qū);(3)派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44871-2024紡織品二異氰酸酯類化合物的測定
- 食品企業(yè)總經(jīng)理招聘合同
- 特殊管理藥品市場準入指南
- 高山度假村道路建設合同
- 城市廣場鐵藝安裝協(xié)議
- 2024年配電箱柜集成解決方案采購合同3篇
- 2024年透水混凝土施工協(xié)議3篇
- 家庭園丁保姆合同樣本
- 砌體結(jié)構(gòu)防水防腐施工合同
- 通信設備銷售票據(jù)管理
- 《公共政策學(第二版)》 課件 楊宏山 第1-6章 導論、政策系統(tǒng)-政策執(zhí)行
- 2024年商用密碼應用安全性評估從業(yè)人員考核試題庫-中(多選題)
- Be going to 句型(教學設計)-2023-2024學年人教PEP版英語五年級下冊
- 2024小學數(shù)學新教材培訓:新教材的主要特色
- 2024年中考數(shù)學復習:阿氏圓最值模型專項練習
- 2023年10月下半年空軍直接選拔招錄軍官筆試歷年典型考題及考點剖析附答案詳解
- 土方清理合同范本
- 防洪排澇項目社會穩(wěn)定風險分析
- DL∕T 1455-2015 電力系統(tǒng)控制類軟件安全性及其測評技術要求
- 流程即組織力(企業(yè)高效增長的業(yè)務管理邏輯)
- 新公司組織架構(gòu)圖及人員設置
評論
0/150
提交評論