![山東省汶上縣2022年中考數(shù)學五模試卷含解析_第1頁](http://file4.renrendoc.com/view2/M00/13/0B/wKhkFmZZKbKAC4qvAAGi52B9Onw218.jpg)
![山東省汶上縣2022年中考數(shù)學五模試卷含解析_第2頁](http://file4.renrendoc.com/view2/M00/13/0B/wKhkFmZZKbKAC4qvAAGi52B9Onw2182.jpg)
![山東省汶上縣2022年中考數(shù)學五模試卷含解析_第3頁](http://file4.renrendoc.com/view2/M00/13/0B/wKhkFmZZKbKAC4qvAAGi52B9Onw2183.jpg)
![山東省汶上縣2022年中考數(shù)學五模試卷含解析_第4頁](http://file4.renrendoc.com/view2/M00/13/0B/wKhkFmZZKbKAC4qvAAGi52B9Onw2184.jpg)
![山東省汶上縣2022年中考數(shù)學五模試卷含解析_第5頁](http://file4.renrendoc.com/view2/M00/13/0B/wKhkFmZZKbKAC4qvAAGi52B9Onw2185.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省汶上縣2022年中考數(shù)學五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若實數(shù)m滿足,則下列對m值的估計正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<22.不等式組的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<33.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個4.計算的結果是()A.a(chǎn)2 B.-a2 C.a(chǎn)4 D.-a45.有若干個完全相同的小正方體堆成一個如圖所示幾何體,若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個數(shù)為()A.2 B.3 C.4 D.56.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.7.已知二次函數(shù)的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<08.如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+29.如圖是嬰兒車的平面示意圖,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度數(shù)為()A.80° B.90° C.100° D.102°10.如圖,將含60°角的直角三角板ABC繞頂點A順時針旋轉(zhuǎn)45°度后得到△AB′C′,點B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π11.有兩組數(shù)據(jù),A組數(shù)據(jù)為2、3、4、5、6;B組數(shù)據(jù)為1、7、3、0、9,這兩組數(shù)據(jù)的()A.中位數(shù)相等B.平均數(shù)不同C.A組數(shù)據(jù)方差更大D.B組數(shù)據(jù)方差更大12.下列圖形中,陰影部分面積最大的是A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算(-2)×3+(-3)=_______________.14.已知:如圖,△ABC的面積為12,點D、E分別是邊AB、AC的中點,則四邊形BCED的面積為_____.15.關于x的分式方程有增根,則m的值為__________.16.標號分別為1,2,3,4,……,n的n張標簽(除標號外其它完全相同),任摸一張,若摸得奇數(shù)號標簽的概率大于0.5,則n可以是_____.17.如圖所示,D、E之間要挖建一條直線隧道,為計算隧道長度,工程人員在線段AD和AE上選擇了測量點B,C,已知測得AD=100,AE=200,AB=40,AC=20,BC=30,則通過計算可得DE長為_____.18.某商場將一款品牌時裝按標價打九折出售,可獲利80%,這款商品的標價為1000元,則進價為________元。三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:.20.(6分)學了統(tǒng)計知識后,小紅就本班同學上學“喜歡的出行方式”進行了一次調(diào)查,圖(1)和圖(2)是她根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答以下問題:(1)補全條形統(tǒng)計圖,并計算出“騎車”部分所對應的圓心角的度數(shù).(2)若由3名“喜歡乘車”的學生,1名“喜歡騎車”的學生組隊參加一項活動,現(xiàn)欲從中選出2人擔任組長(不分正副),求出2人都是“喜歡乘車”的學生的概率,(要求列表或畫樹狀圖)21.(6分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.22.(8分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,點D是點C關于拋物線對稱軸的對稱點,連接CD,過點D作DH⊥x軸于點H,過點A作AE⊥AC交DH的延長線于點E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點F,在線段DE上找一點P,且點M為直線PF上方拋物線上的一點,求當△CPF的周長最小時,△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點K,則是否存在這樣的點K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.23.(8分)如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.(1)求點B距水平面AE的高度BH;(2)求廣告牌CD的高度.24.(10分)某地鐵站口的垂直截圖如圖所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C點到地面AD的距離(結果保留根號).25.(10分)一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.用樹狀圖或列表等方法列出所有可能出現(xiàn)的結果;求兩次摸到的球的顏色不同的概率.26.(12分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)27.(12分)如圖,在頂點為P的拋物線y=a(x-h)2+k(a≠0)的對稱軸1的直線上取點A(h,k+),過A作BC⊥l交拋物線于B、C兩點(B在C的左側),點和點A關于點P對稱,過A作直線m⊥l.又分別過點B,C作直線BE⊥m和CD⊥m,垂足為E,D.在這里,我們把點A叫此拋物線的焦點,BC叫此拋物線的直徑,矩形BCDE叫此拋物線的焦點矩形.(1)直接寫出拋物線y=x2的焦點坐標以及直徑的長.(2)求拋物線y=x2-x+的焦點坐標以及直徑的長.(3)已知拋物線y=a(x-h)2+k(a≠0)的直徑為,求a的值.(4)①已知拋物線y=a(x-h)2+k(a≠0)的焦點矩形的面積為2,求a的值.②直接寫出拋物線y=x2-x+的焦點短形與拋物線y=x2-2mx+m2+1公共點個數(shù)分別是1個以及2個時m的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數(shù)y=m2+2與函數(shù)y=-,作函數(shù)圖象如圖,在第二象限,函數(shù)y=m2+2的y值隨m的增大而減小,函數(shù)y=-的y值隨m的增大而增大,當m=-2時y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點橫坐標大于-2,當m=-1時,y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點橫坐標小于-1,∴-2<m<-1.故選A.考點:1.二次函數(shù)的圖象;2.反比例函數(shù)的圖象.2、B【解析】
根據(jù)解不等式組的方法可以求得原不等式組的解集.【詳解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式組的解集是x>1.故選B.【點睛】本題考查解一元一次不等式組,解題的關鍵是明確解一元一次不等式組的方法.3、D【解析】試題分析:根據(jù)等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進行分析.解:使△ABC是等腰三角形,當AB當?shù)讜r,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當讓AB當腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關鍵是要分情況而定,所以學生一定要思維嚴密,不可遺漏.4、D【解析】
直接利用同底數(shù)冪的乘法運算法則計算得出答案.【詳解】解:,故選D.【點睛】此題主要考查了同底數(shù)冪的乘法運算,正確掌握運算法則是解題關鍵.5、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側正方體上添加1個,往第3排中間正方體上添加2個、右側兩個正方體上再添加1個,即一共添加4個小正方體,故選C.6、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.7、B【解析】
根據(jù)拋物線的開口方向確定a,根據(jù)拋物線與y軸的交點確定c,根據(jù)對稱軸確定b,根據(jù)拋物線與x軸的交點確定b2-4ac,根據(jù)x=1時,y>0,確定a+b+c的符號.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個交點,∴b2-4ac>0,C錯誤;當x=1時,y>0,∴a+b+c>0,D錯誤;故選B.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.8、D【解析】
抓住兩個特殊位置:當BC與x軸平行時,求出D的坐標;C與原點重合時,D在y軸上,求出此時D的坐標,設所求直線解析式為y=kx+b,將兩位置D坐標代入得到關于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標為(﹣1,3);當C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設所求直線解析式為y=kx+b(k≠0),將兩點坐標代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【點睛】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,等腰直角三角形的性質(zhì),坐標與圖形性質(zhì),熟練運用待定系數(shù)法是解答本題的關鍵.9、A【解析】分析:根據(jù)平行線性質(zhì)求出∠A,根據(jù)三角形內(nèi)角和定理得出∠2=180°∠1?∠A,代入求出即可.詳解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1?∠A=80°,故選:A.點睛:本題考查了平行線的性質(zhì):兩直線平行,內(nèi)錯角相等.三角形內(nèi)角和定理:三角形內(nèi)角和為180°.10、A【解析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據(jù)旋轉(zhuǎn)的性質(zhì)知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點:1.扇形面積的計算;2.旋轉(zhuǎn)的性質(zhì).11、D【解析】
分別求出兩組數(shù)據(jù)的中位數(shù)、平均數(shù)、方差,比較即可得出答案.【詳解】A組數(shù)據(jù)的中位數(shù)是:4,平均數(shù)是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B組數(shù)據(jù)的中位數(shù)是:3,平均數(shù)是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴兩組數(shù)據(jù)的中位數(shù)不相等,平均數(shù)相等,B組方差更大.故選D.【點睛】本題考查了中位數(shù)、平均數(shù)、方差的計算,熟練掌握中位數(shù)、平均數(shù)、方差的計算方法是解答本題的關鍵.12、C【解析】
分別根據(jù)反比例函數(shù)系數(shù)k的幾何意義以及三角形面積求法以及梯形面積求法得出即可:【詳解】A、根據(jù)反比例函數(shù)系數(shù)k的幾何意義,陰影部分面積和為:xy=1.B、根據(jù)反比例函數(shù)系數(shù)k的幾何意義,陰影部分面積和為:.C、如圖,過點M作MA⊥x軸于點A,過點N作NB⊥x軸于點B,根據(jù)反比例函數(shù)系數(shù)k的幾何意義,S△OAM=S△OAM=,從而陰影部分面積和為梯形MABN的面積:.D、根據(jù)M,N點的坐標以及三角形面積求法得出,陰影部分面積為:.綜上所述,陰影部分面積最大的是C.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-9【解析】
根據(jù)有理數(shù)的計算即可求解.【詳解】(-2)×3+(-3)=-6-3=-9【點睛】此題主要考查有理數(shù)的混合運算,解題的關鍵是熟知有理數(shù)的運算法則.14、1【解析】【分析】設四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據(jù)此建立關于x的方程,解之可得.【詳解】設四邊形BCED的面積為x,則S△ADE=12﹣x,∵點D、E分別是邊AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【點睛】本題主要考查相似三角形的判定與性質(zhì),解題的關鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質(zhì).15、1.【解析】去分母得:7x+5(x-1)=2m-1,因為分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案為1.16、奇數(shù).【解析】
根據(jù)概率的意義,分n是偶數(shù)和奇數(shù)兩種情況分析即可.【詳解】若n為偶數(shù),則奇數(shù)與偶數(shù)個數(shù)相等,即摸得奇數(shù)號標簽的概率為0.5,若n為奇數(shù),則奇數(shù)比偶數(shù)多一個,此時摸得奇數(shù)號標簽的概率大于0.5,故答案為:奇數(shù).【點睛】本題考查概率公式,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.17、1.【解析】
先根據(jù)相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性質(zhì)解答即可.【詳解】∵∴又∵∠A=∠A,∴△ABC∽△AED,∴∵BC=30,∴DE=1,故答案為1.【點睛】考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關鍵.18、500【解析】
設該品牌時裝的進價為x元,根據(jù)題意列出方程,求出方程的解得到x的值,即可得到結果.【詳解】解:設該品牌時裝的進價為x元,根據(jù)題意得:1000×90%-x=80%x,解得:x=500,則該品牌時裝的進價為500元.故答案為:500.【點睛】本題考查了一元一次方程的應用,找出題中的等量關系是解本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、【解析】
根據(jù)絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的性質(zhì)、二次根式的性質(zhì)及乘方的定義分別計算后,再合并即可【詳解】原式.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關鍵.20、(1)補全條形統(tǒng)計圖見解析;“騎車”部分所對應的圓心角的度數(shù)為108°;(2)2人都是“喜歡乘車”的學生的概率為.【解析】
(1)從兩圖中可以看出乘車的有25人,占了50%,即可得共有學生50人;總人數(shù)減乘車的和騎車的人數(shù)就是步行的人數(shù),根據(jù)數(shù)據(jù)補全直方圖即可;要求扇形的度數(shù)就要先求出騎車的占的百分比,然后再求度數(shù);(2)列出從這4人中選兩人的所有等可能結果數(shù),2人都是“喜歡乘車”的學生的情況有3種,然后根據(jù)概率公式即可求得.【詳解】(1)被調(diào)查的總人數(shù)為25÷50%=50人;則步行的人數(shù)為50﹣25﹣15=10人;如圖所示條形圖,“騎車”部分所對應的圓心角的度數(shù)=×360°=108°;(2)設3名“喜歡乘車”的學生表示為A、B、C,1名“喜歡騎車”的學生表示為D,則有AB、AC、AD、BC、BD、CD這6種等可能的情況,其中2人都是“喜歡乘車”的學生有3種結果,所以2人都是“喜歡乘車”的學生的概率為.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、證明見解析.【解析】試題分析:首先根據(jù)等邊對等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,進而得到∠C=∠D,根據(jù)等角對等邊可得CO=DO.試題解析:證明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考點:等腰三角形的性質(zhì)與判定,平行線的性質(zhì)22、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標,進而求得D的坐標,即可求得DH的長度,令y=0,求得A,B的坐標,然后證得△ACO∽△EAH,根據(jù)對應邊成比例求得EH的長,進繼而求得DE的長;(2)找點C關于DE的對稱點N(4,),找點C關于AE的對稱點G(-2,-),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點的坐標求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點M作y軸的平行線交FH于點Q,設點M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點C關于DE的對稱點N(4,),找點C關于AE的對稱點G(﹣2,﹣),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點M作y軸的平行線交FH于點Q,設點M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對稱軸為:直線m=<2,開口向下,∴m=時,△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,1)當KF′=KF″時,如圖3,點K在F′F″的垂直平分線上,所以K與B重合,坐標為(3,0),∴OK=3;2)當F′F″=F′K時,如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當F″F′=F″K時,如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰三角形的性質(zhì)等,分類討論的思想是解題的關鍵.23、(1)BH為10米;(2)宣傳牌CD高約(40﹣20)米【解析】
(1)過B作DE的垂線,設垂足為G.分別在Rt△ABH中,通過解直角三角形求出BH、AH;
(2)在△ADE解直角三角形求出DE的長,進而可求出EH即BG的長,在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長然后根據(jù)CD=CG+GE-DE即可求出宣傳牌的高度.【詳解】(1)過B作BH⊥AE于H,Rt△ABH中,∠BAH=30°,∴BH=AB=×20=10(米),即點B距水平面AE的高度BH為10米;(2)過B作BG⊥DE于G,∵BH⊥HE,GE⊥HE,BG⊥DE,∴四邊形BHEG是矩形.∵由(1)得:BH=10,AH=10,∴BG=AH+AE=(10+30)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(10+30)米,∴CE=CG+GE=CG+BH=10+30+10=10+40(米),在Rt△AED中,=tan∠DAE=tan60°=,DE=AE=30∴CD=CE﹣DE=10+40﹣30=40﹣20.答:宣傳牌CD高約(40﹣20)米.【點睛】本題考查解直角三角形的應用-仰角俯角問題和解直角三角形的應用-坡度坡角問題,解題的關鍵是掌握解直角三角形的應用-仰角俯角問題和解直角三角形的應用-坡度坡角問題的基本方法.24、C點到地面AD的距離為:(2+2)m.【解析】
直接構造直角三角形,再利用銳角三角函數(shù)關系得出BE,CF的長,進而得出答案.【詳解】過點B作BE⊥AD于E,作BF∥AD,過C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由題意可得:BF∥AD,則∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°?BC=∴C點到地面AD的距離為:【點睛】考查解直角三角形,熟練掌握銳角三角函數(shù)是解題的關鍵.25、(1)詳見解析;(2).【解析】試題分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)由(1)中樹狀圖可求得兩次摸到的球的顏色不同的情況有4種,再利用概率公式求解即可求得答案.試題解析:(1)如圖:,所有可能的結果為(白1,白2)、(白1,紅)、(白2,白1)、(白2,紅)、(紅,白1)、(紅,白2);(2)共有6種情況,兩次摸到的球的顏色不同的情況有4種,概率為.26、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解析】
(1)直接利用銳角三角函數(shù)關系得出cos∠FHE=,進而得出答案;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結論.【詳解】(1)由題意可得:cos∠FHE=,則∠FHE=60°;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:籃板頂端F到地面的距離是4.4米.【點睛】本題考查解直角三角形、銳角三角函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電動車專賣店銷售協(xié)議書
- 教育技術專業(yè)工具操作作業(yè)指導書
- 2025年貴陽貨運資格證題目答案
- 2024-2025學年三年級語文下冊第三單元12一幅名揚中外的畫作業(yè)設計新人教版
- 2024年高中歷史第一單元古代中國的政治制度易混易錯高考體驗含解析新人教版必修1
- 四年級混合運算計算題100題
- 五年級蘇教版數(shù)學下冊《質(zhì)數(shù)與合數(shù)》聽評課記錄(校內(nèi)大組)
- 2022-2023學年第二學期高一中職數(shù)學期末考試模擬測試題
- 粵教版道德與法治八年級下冊8.1《社會合作與公平》聽課評課記錄2
- 空壓機維修及保養(yǎng)合同范本
- 2024中國保險發(fā)展報告-中南大風險管理研究中心.燕道數(shù)科
- 元素的用途完整版本
- 第15課 列強入侵與中國人民的反抗斗爭 教學設計-2023-2024學年中職高一上學期高教版(2023)中國歷史全一冊
- 建筑設計工程設計方案
- 供熱行業(yè)環(huán)境保護管理辦法
- (2024年)氣胸完整課件
- 七十歲換領證駕考三力測試答題
- 2023年部編版高中語文必修上冊古詩詞誦讀
- 2024年湖南省生態(tài)環(huán)境監(jiān)測專業(yè)技術人員大比武競賽考試題庫(含答案)
- 2024年01月上海證券交易所社會招考聘用筆試近6年高頻考題難、易錯點薈萃答案帶詳解附后
- 2024版義務教育小學數(shù)學課程標準
評論
0/150
提交評論