2022屆吉林省長春市157中學畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
2022屆吉林省長春市157中學畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
2022屆吉林省長春市157中學畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
2022屆吉林省長春市157中學畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
2022屆吉林省長春市157中學畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022屆吉林省長春市157中學畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.2.如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數(shù)是()A.40° B.50° C.60° D.140°3.如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°4.已知一組數(shù)據(jù)1、2、3、x、5,它們的平均數(shù)是3,則這一組數(shù)據(jù)的方差為()A.1 B.2 C.3 D.45.已知圓錐的側(cè)面積為10πcm2,側(cè)面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm6.據(jù)相關(guān)報道,開展精準扶貧工作五年以來,我國約有55000000人擺脫貧困,將55000000用科學記數(shù)法表示是()A.55×106 B.0.55×108 C.5.5×106 D.5.5×1077.如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°8.如圖,直線m∥n,直角三角板ABC的頂點A在直線m上,則∠α的余角等于()A.19° B.38° C.42° D.52°9.從3、1、-2這三個數(shù)中任取兩個不同的數(shù)作為P點的坐標,則P點剛好落在第四象限的概率是()A. B. C. D.10.如圖,內(nèi)接于,若,則A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.從三角形(非等腰三角形)一個頂點引出一條射線與對邊相交,該頂點與該交點間的線段把這個三角形分割成兩個小三角形,如果其中一個小三角形是等腰三角形,另一個與原三角形相似,那么我們把這條線段叫做這個三角形的完美分割線,如圖,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,則CD的長為_____.12.若關(guān)于x的方程x2-x+sinα=0有兩個相等的實數(shù)根,則銳角α的度數(shù)為___.13.把多項式a3-2a2+a分解因式的結(jié)果是14.在一個不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,從中任意摸出一個球,則摸出白球的概率是_____.15.布袋中裝有2個紅球和5個白球,它們除顏色外其它都相同.如果從這個布袋里隨機摸出一個球,那么所摸到的球恰好為紅球的概率是

________.16.如圖,在菱形ABCD中,AB=,∠B=120°,點E是AD邊上的一個動點(不與A,D重合),EF∥AB交BC于點F,點G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.三、解答題(共8題,共72分)17.(8分)如圖,菱形中,分別是邊的中點.求證:.18.(8分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經(jīng)過的路徑長.19.(8分)光華農(nóng)機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農(nóng)機租賃公司商定的每天的租賃價格見表:每臺甲型收割機的租金每臺乙型收割機的租金A地區(qū)18001600B地區(qū)16001200(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數(shù)關(guān)系式,并寫出x的取值范圍;(2)若使農(nóng)機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設計出來;(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農(nóng)機租賃公司提一條合理化建議.20.(8分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個,若從中隨機摸出一個球,這個球是白球的概率為.求袋子中白球的個數(shù);(請通過列式或列方程解答)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)21.(8分)計算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201822.(10分)某經(jīng)銷商經(jīng)銷的冰箱二月份的售價比一月份每臺降價500元,已知賣出相同數(shù)量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.(1)二月份冰箱每臺售價為多少元?(2)為了提高利潤,該經(jīng)銷商計劃三月份再購進洗衣機進行銷售,已知洗衣機每臺進價為4000元,冰箱每臺進價為3500元,預計用不多于7.6萬元的資金購進這兩種家電共20臺,設冰箱為y臺(y≤12),請問有幾種進貨方案?(3)三月份為了促銷,該經(jīng)銷商決定在二月份售價的基礎上,每售出一臺冰箱再返還顧客現(xiàn)金a元,而洗衣機按每臺4400元銷售,這種情況下,若(2)中各方案獲得的利潤相同,則a應取何值?23.(12分)已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點,求tan∠ABE.24.如圖是一副撲克牌中的三張牌,將它們正面向下洗均勻,甲同學從中隨機抽取一張牌后放回,乙同學再從中隨機抽取一張牌,用樹狀圖(或列表)的方法,求抽出的兩張牌中,牌面上的數(shù)字都是偶數(shù)的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),結(jié)合無理數(shù)的定義進行判斷即可得答案.【詳解】A、π是無限不循環(huán)小數(shù),屬于無理數(shù),故本選項錯誤;B、0是有理數(shù),故本選項正確;C、是無理數(shù),故本選項錯誤;D、是無理數(shù),故本選項錯誤,故選B.【點睛】本題考查了實數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù)是解題的關(guān)鍵.2、A【解析】試題分析:根據(jù)直角三角形兩銳角互余求出∠3,再根據(jù)兩直線平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故選A.3、D【解析】

先利用互余計算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=∠CBD=28°,然后利用三角形外角性質(zhì)計算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.4、B【解析】

先由平均數(shù)是3可得x的值,再結(jié)合方差公式計算.【詳解】∵數(shù)據(jù)1、2、3、x、5的平均數(shù)是3,∴=3,解得:x=4,則數(shù)據(jù)為1、2、3、4、5,∴方差為×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故選B.【點睛】本題主要考查算術(shù)平均數(shù)和方差,解題的關(guān)鍵是熟練掌握平均數(shù)和方差的定義.5、C【解析】

圓錐的側(cè)面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設母線長為R,則圓錐的側(cè)面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關(guān)鍵.6、D【解析】試題解析:55000000=5.5×107,故選D.考點:科學記數(shù)法—表示較大的數(shù)7、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.8、D【解析】試題分析:過C作CD∥直線m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,則∠a的余角是52°.故選D.考點:平行線的性質(zhì);余角和補角.9、B【解析】解:畫樹狀圖得:∵共有6種等可能的結(jié)果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內(nèi)點的符號特點是解題的關(guān)鍵.10、B【解析】

根據(jù)圓周角定理求出,根據(jù)三角形內(nèi)角和定理計算即可.【詳解】解:由圓周角定理得,,,,故選:B.【點睛】本題考查的是三角形的外接圓與外心,掌握圓周角定理、等腰三角形的性質(zhì)、三角形內(nèi)角和定理是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

設AB=x,利用△BCD∽△BAC,得=,列出方程即可解決問題.【詳解】∵△BCD∽△BAC,∴=,設AB=x,∴22=x,∵x>0,∴x=4,∴AC=AD=4-1=3,∵△BCD∽△BAC,∴==,∴CD=.故答案為【點睛】本題考查相似三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是利用△BCD∽△BAC解答.12、30°【解析】試題解析:∵關(guān)于x的方程有兩個相等的實數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.13、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,.14、【解析】

根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大?。驹斀狻拷猓骸咴谝粋€不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,∴從中任意摸出一個球,則摸出白球的概率是.故答案為:.【點睛】本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=15、2【解析】試題解析:∵一個布袋里裝有2個紅球和5個白球,∴摸出一個球摸到紅球的概率為:22+5考點:概率公式.16、1或【解析】

由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到EF∥AB,于是得到EF=AB=,當△EFG為等腰三角形時,①EF=GE=時,于是得到DE=DG=AD÷=1,②GE=GF時,根據(jù)勾股定理得到DE=.【詳解】解:∵四邊形ABCD是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四邊形ABFE是平行四邊形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,當△EFG為等腰三角形時,當EF=EG時,EG=,如圖1,過點D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,GE=GF時,如圖2,過點G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,過點D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,當EF=FG時,由∠EFG=180°-2×30°=120°=∠CFE,此時,點C和點G重合,點F和點B重合,不符合題意,故答案為1或.【點睛】本題考查了菱形的性質(zhì),平行四邊形的性質(zhì),等腰三角形的性質(zhì)以及勾股定理,熟練掌握各性質(zhì)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、證明見解析.【解析】

根據(jù)菱形的性質(zhì),先證明△ABE≌△ADF,即可得解.【詳解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵點E,F(xiàn)分別是BC,CD邊的中點,∴BE=BC,DF=CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.18、(1)k=2;(2)點D經(jīng)過的路徑長為.【解析】

(1)根據(jù)題意求得點B的坐標,再代入求得k值即可;(2)設平移后與反比例函數(shù)圖象的交點為D′,由平移性質(zhì)可知DD′∥OB,過D′作D′E⊥x軸于點E,交DC于點F,設CD交y軸于點M(如圖),根據(jù)已知條件可求得點D的坐標為(﹣1,1),設D′橫坐標為t,則OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的長,即可得點D經(jīng)過的路徑長.【詳解】(1)∵△AOB和△COD為全等三的等腰直角三角形,OC=,∴AB=OA=OC=OD=,∴點B坐標為(,),代入得k=2;(2)設平移后與反比例函數(shù)圖象的交點為D′,由平移性質(zhì)可知DD′∥OB,過D′作D′E⊥x軸于點E,交DC于點F,設CD交y軸于點M,如圖,∵OC=OD=,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐標為(﹣1,1),設D′橫坐標為t,則OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函數(shù)圖象上,∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),∴D′(﹣1,+1),∴DD′=,即點D經(jīng)過的路徑長為.【點睛】本題是反比例函數(shù)與幾何的綜合題,求得點D′的坐標是解決第(2)問的關(guān)鍵.19、(1)y=200x+74000(10≤x≤30)(2)有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機2臺,乙型聯(lián)合收割機28臺,其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機1臺,乙型聯(lián)合收割機29臺,其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機0臺,乙型聯(lián)合收割機30臺,其余的全派往B地區(qū);(3)派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高.【解析】

(1)根據(jù)題意和表格中的數(shù)據(jù)可以得到y(tǒng)關(guān)于x的函數(shù)關(guān)系式;

(2)根據(jù)題意可以得到相應的不等式,從而可以解答本題;

(3)根據(jù)(1)中的函數(shù)解析式和一次函數(shù)的性質(zhì)可以解答本題.【詳解】解:(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,則派往B地區(qū)x臺乙型聯(lián)合收割機為(30﹣x)臺,派往A、B地區(qū)的甲型聯(lián)合收割機分別為(30﹣x)臺和(x﹣10)臺,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由題意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x為整數(shù),∴x=28、29、30,∴有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機2臺,乙型聯(lián)合收割機28臺,其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機1臺,乙型聯(lián)合收割機29臺,其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機0臺,乙型聯(lián)合收割機30臺,其余的全派往B地區(qū);(3)派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高,理由:∵y=200x+74000中y隨x的增大而增大,∴當x=30時,y取得最大值,此時y=80000,∴派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高.【點睛】本題考查一次函數(shù)的性質(zhì),解題關(guān)鍵是明確題意,找出所求問題需要的條件,利用一次函數(shù)和不等式的性質(zhì)解答.20、(1)袋子中白球有2個;(2)見解析,.【解析】

(1)首先設袋子中白球有x個,利用概率公式求即可得方程:,解此方程即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.【詳解】解:(1)設袋子中白球有x個,根據(jù)題意得:,解得:x=2,經(jīng)檢驗,x=2是原分式方程的解,∴袋子中白球有2個;(2)畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:.【點睛】此題考查了列表法或樹狀圖法求概率.注意掌握方程思想的應用.注意概率=所求情況數(shù)與總情況數(shù)之比.21、-1【解析】

原式利用乘方的意義,特殊角的三角函數(shù)值,零指數(shù)冪法則計算即可求出值.【詳解】解:原式=﹣4+1+1+1=﹣1.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.22、(1)二月份冰箱每臺售價為4000元;(2)有五種購貨方案;(3)a的值為1.【解析】

(1)設二月份冰箱每臺售價為x元,則一月份冰箱每臺售價為(x+500)元,根據(jù)數(shù)量=總價÷單價結(jié)合賣出相同數(shù)量的冰箱一月份的銷售額為9萬元而二月份的銷售額只有3萬元,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)根據(jù)總價=單價×數(shù)量結(jié)合預計用不多于7.6萬元的資金購進這兩種家電共20臺,即可得出關(guān)于y的一元一次不等式,解之即可得出y的取值范圍,結(jié)合y≤2及y為正整數(shù),即可得出各進貨方案;(3)設總獲利為w,購進冰箱為m臺,洗衣機為(20﹣m)臺,根據(jù)總利潤=單臺利潤×購進數(shù)量,即可得出w關(guān)于m的函數(shù)關(guān)系式,由w為定值即可求出a的值.【詳解】(1)設二月份冰箱每臺售價為x元,則一月份冰箱每臺售價為(x+500)元,根據(jù)題意,得:=,解得:x=4000,經(jīng)檢驗,x=4000是原方程的根.答:二月份冰箱每臺售價為4000元.(2)根據(jù)題意,得:3500y+4000(20﹣y)≤76000,解得:y≥3,∵y≤2且y為整數(shù),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論