大石橋市水源二中2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
大石橋市水源二中2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
大石橋市水源二中2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
大石橋市水源二中2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
大石橋市水源二中2022年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

大石橋市水源二中2022年十校聯(lián)考最后數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.被譽(yù)為“中國天眼”的世界上最大的單口徑球面射電望遠(yuǎn)鏡FAST的反射面總面積約為250000m2,則250000用科學(xué)記數(shù)法表示為()A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m22.點(diǎn)P(4,﹣3)關(guān)于原點(diǎn)對稱的點(diǎn)所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限3.已知一組數(shù)據(jù)2、x、8、1、1、2的眾數(shù)是2,那么這組數(shù)據(jù)的中位數(shù)是()A.3.1;B.4;C.2;D.6.1.4.如圖,兩個(gè)同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm5.已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;

當(dāng)時(shí),;,其中錯(cuò)誤的結(jié)論有A.②③ B.②④ C.①③ D.①④6.如圖,下列條件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?AC D.7.如圖,矩形紙片中,,,將沿折疊,使點(diǎn)落在點(diǎn)處,交于點(diǎn),則的長等于()A. B. C. D.8.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+19.在代數(shù)式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠010.如圖,平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點(diǎn)B坐標(biāo)為(6,4),反比例函數(shù)的圖象與AB邊交于點(diǎn)D,與BC邊交于點(diǎn)E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,點(diǎn)B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.11.2022年冬奧會,北京、延慶、張家口三個(gè)賽區(qū)共25個(gè)場館,北京共12個(gè),其中11個(gè)為2008年奧運(yùn)會遺留場館,唯一一個(gè)新建的場館是國家速滑館,可容納12000人觀賽,將12000用科學(xué)記數(shù)法表示應(yīng)為()A.12×10 B.1.2×10 C.1.2×10 D.0.12×1012.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(﹣3,﹣4),頂點(diǎn)C在x軸的負(fù)半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點(diǎn),則k的值為()A.6 B.8 C.10 D.12二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如果關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,那么的取值范圍是__________.14.已知,在同一平面內(nèi),∠ABC=50°,AD∥BC,∠BAD的平分線交直線BC于點(diǎn)E,那么∠AEB的度數(shù)為__________.15.分解因式:2x2-8x+8=__________.16.兩個(gè)反比例函數(shù)y=kx和y=1x在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=kx的圖象上,PC⊥x軸于點(diǎn)C,交17.如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為__.18.如圖,直線a∥b,直線c分別于a,b相交,∠1=50°,∠2=130°,則∠3的度數(shù)為()A.50° B.80° C.100° D.130°三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)與反比例函數(shù)的圖像交于點(diǎn)和點(diǎn),且經(jīng)過點(diǎn).求反比例函數(shù)和一次函數(shù)的表達(dá)式;求當(dāng)時(shí)自變量的取值范圍.20.(6分)已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個(gè)交點(diǎn);②對于任意實(shí)數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數(shù)y=ax2+bx的解析式;(2)若當(dāng)-2≤x≤r(r≠0)時(shí),恰有t≤y≤1.5r成立,求t和r的值.21.(6分)某校在一次大課間活動(dòng)中,采用了四種活動(dòng)形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動(dòng),小杰對同學(xué)們選用的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的統(tǒng)計(jì)圖.請結(jié)合統(tǒng)計(jì)圖,回答下列問題:(1)本次調(diào)查學(xué)生共人,a=,并將條形圖補(bǔ)充完整;(2)如果該校有學(xué)生2000人,請你估計(jì)該校選擇“跑步”這種活動(dòng)的學(xué)生約有多少人?(3)學(xué)校讓每班在A、B、C、D四種活動(dòng)形式中,隨機(jī)抽取兩種開展活動(dòng),請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.22.(8分)某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問題:(1)本次調(diào)查的學(xué)生有多少人?(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;(3)扇形統(tǒng)計(jì)圖中C對應(yīng)的中心角度數(shù)是;(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?23.(8分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.24.(10分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(8,0)、點(diǎn)B(0,4),點(diǎn)C、D分別是邊OA、AB的中點(diǎn).將△ACD繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當(dāng)BD′∥OA時(shí),求點(diǎn)D′的坐標(biāo);(II)如圖②,當(dāng)α=60°時(shí),求點(diǎn)C′的坐標(biāo);(III)當(dāng)點(diǎn)B,D′,C′共線時(shí),求點(diǎn)C′的坐標(biāo)(直接寫出結(jié)果即可).25.(10分)如圖,在菱形ABCD中,作于E,BF⊥CD于F,求證:.26.(12分)關(guān)于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)當(dāng)m為何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;(2)當(dāng)m為何整數(shù)時(shí),此方程的兩個(gè)根都為負(fù)整數(shù).27.(12分)在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測試,并對成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請你根據(jù)圖表中的信息完成下列問題:頻數(shù)分布表中a=,b=,并將統(tǒng)計(jì)圖補(bǔ)充完整;如果該校七年級共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù).【詳解】解:由科學(xué)記數(shù)法可知:250000m2=2.5×105m2,故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法表示較大的數(shù)的方法,準(zhǔn)確確定a與n值是關(guān)鍵.2、C【解析】

由題意得點(diǎn)P的坐標(biāo)為(﹣4,3),根據(jù)象限內(nèi)點(diǎn)的符號特點(diǎn)可得點(diǎn)P1的所在象限.【詳解】∵設(shè)P(4,﹣3)關(guān)于原點(diǎn)的對稱點(diǎn)是點(diǎn)P1,∴點(diǎn)P1的坐標(biāo)為(﹣4,3),∴點(diǎn)P1在第二象限.故選C【點(diǎn)睛】本題主要考查了兩點(diǎn)關(guān)于原點(diǎn)對稱,這兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù);符號為(﹣,+)的點(diǎn)在第二象限.3、A【解析】∵數(shù)據(jù)組2、x、8、1、1、2的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)按從小到大排列為:2、2、2、1、1、8,∴這組數(shù)據(jù)的中位數(shù)是:(2+1)÷2=3.1.故選A.4、B【解析】

首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進(jìn)而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,

∵大圓的一條弦AB與小圓相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的長==4π,

故選B.【點(diǎn)睛】本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.5、C【解析】

①根據(jù)圖象的開口方向,可得a的范圍,根據(jù)圖象與y軸的交點(diǎn),可得c的范圍,根據(jù)有理數(shù)的乘法,可得答案;

②根據(jù)自變量為-1時(shí)函數(shù)值,可得答案;

③根據(jù)觀察函數(shù)圖象的縱坐標(biāo),可得答案;

④根據(jù)對稱軸,整理可得答案.【詳解】圖象開口向下,得a<0,

圖象與y軸的交點(diǎn)在x軸的上方,得c>0,ac<,故①錯(cuò)誤;

②由圖象,得x=-1時(shí),y<0,即a-b+c<0,故②正確;

③由圖象,得

圖象與y軸的交點(diǎn)在x軸的上方,即當(dāng)x<0時(shí),y有大于零的部分,故③錯(cuò)誤;

④由對稱軸,得x=-=1,解得b=-2a,

2a+b=0

故④正確;

故選D.【點(diǎn)睛】考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小.當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置:當(dāng)a與b同號時(shí),對稱軸在y軸左;當(dāng)a與b異號時(shí),對稱軸在y軸右.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn):拋物線與y軸交于(0,c).拋物線與x軸交點(diǎn)個(gè)數(shù)由判別式確定:△=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn).6、D【解析】

根據(jù)有兩個(gè)角對應(yīng)相等的三角形相似,以及根據(jù)兩邊對應(yīng)成比例且夾角相等的兩個(gè)三角形相似,分別判斷得出即可.【詳解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此選項(xiàng)不合題意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此選項(xiàng)不合題意;C、∵AB2=AD?AC,∴,∠A=∠A,△ABC∽△ADB,故此選項(xiàng)不合題意;D、=不能判定△ADB∽△ABC,故此選項(xiàng)符合題意.故選D.【點(diǎn)睛】點(diǎn)評:本題考查了相似三角形的判定,利用了有兩個(gè)角對應(yīng)相等的三角形相似,兩邊對應(yīng)成比例且夾角相等的兩個(gè)三角形相似.7、B【解析】

由折疊的性質(zhì)得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結(jié)論EF=DF;易得FC=FA,設(shè)FA=x,則FC=x,F(xiàn)D=6-x,在Rt△CDF中利用勾股定理得到關(guān)于x的方程x2=42+(6-x)2,解方程求出x即可.【詳解】∵矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,

∴AE=AB,∠E=∠B=90°,

又∵四邊形ABCD為矩形,

∴AB=CD,

∴AE=DC,

而∠AFE=∠DFC,

∵在△AEF與△CDF中,,∴△AEF≌△CDF(AAS),

∴EF=DF;

∵四邊形ABCD為矩形,

∴AD=BC=6,CD=AB=4,

∵Rt△AEF≌Rt△CDF,

∴FC=FA,

設(shè)FA=x,則FC=x,F(xiàn)D=6-x,

在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,則FD=6-x=.故選B.【點(diǎn)睛】考查了折疊的性質(zhì):折疊前后兩圖形全等,即對應(yīng)角相等,對應(yīng)邊相等.也考查了矩形的性質(zhì)和三角形全等的判定與性質(zhì)以及勾股定理.8、A【解析】

原式變形后,利用平方差公式計(jì)算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點(diǎn)睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.9、D【解析】

根據(jù)二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點(diǎn)睛】本題考查二次根式有意義的條件,解題的關(guān)鍵是熟練運(yùn)用二次根式有意義的條件,本題屬于基礎(chǔ)題型.10、B【解析】

根據(jù)矩形的性質(zhì)得到,CB∥x軸,AB∥y軸,于是得到D、E坐標(biāo),根據(jù)勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據(jù)軸對稱的性質(zhì)得到BF=B′F,BB′⊥ED求得BB′,設(shè)EG=x,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點(diǎn)B坐標(biāo)為(6,1),∴D的橫坐標(biāo)為6,E的縱坐標(biāo)為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關(guān)于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設(shè)EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點(diǎn)睛】本題考查了翻折變換(折疊問題),矩形的性質(zhì),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.11、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】數(shù)據(jù)12000用科學(xué)記數(shù)法表示為1.2×104,故選:B.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.12、B【解析】

根據(jù)勾股定理得到OA==5,根據(jù)菱形的性質(zhì)得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結(jié)論.【詳解】∵點(diǎn)A的坐標(biāo)為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點(diǎn)E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,菱形的性質(zhì),勾股定理,正確的識別圖形是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、k>-且k≠1【解析】由題意知,k≠1,方程有兩個(gè)不相等的實(shí)數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.14、65°或25°【解析】

首先根據(jù)角平分線的定義得出∠EAD=∠EAB,再分情況討論計(jì)算即可.【詳解】解:分情況討論:(1)∵AE平分∠BAD,

∴∠EAD=∠EAB,

∵AD∥BC,

∴∠EAD=∠AEB,

∴∠BAD=∠AEB,

∵∠ABC=50°,

∴∠AEB=?(180°-50°)=65°.(2)∵AE平分∠BAD,

∴∠EAD=∠EAB=,

∵AD∥BC,

∴∠AEB=∠DAE=,∠DAB=∠ABC,

∵∠ABC=50°,

∴∠AEB=×50°=25°.

故答案為:65°或25°.【點(diǎn)睛】本題考查平行線的性質(zhì)、角平分線的定義等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.15、2(x-2)2【解析】

先運(yùn)用提公因式法,再運(yùn)用完全平方公式.【詳解】:2x2-8x+8=.故答案為2(x-2)2.【點(diǎn)睛】本題考核知識點(diǎn):因式分解.解題關(guān)鍵點(diǎn):熟練掌握分解因式的基本方法.16、①②④.【解析】①△ODB與△OCA的面積相等;正確,由于A、B在同一反比例函數(shù)圖象上,則兩三角形面積相等,都為12②四邊形PAOB的面積不會發(fā)生變化;正確,由于矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發(fā)生變化.③PA與PB始終相等;錯(cuò)誤,不一定,只有當(dāng)四邊形OCPD為正方形時(shí)滿足PA=PB.④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).正確,當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),k=2,則此時(shí)點(diǎn)B也一定是PD的中點(diǎn).故一定正確的是①②④17、(-2,7).【解析】

解:過點(diǎn)D作DF⊥x軸于點(diǎn)F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點(diǎn)A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點(diǎn)D的坐標(biāo)為:(﹣7,2),∴反比例函數(shù)的解析式為:y=﹣①,點(diǎn)C的坐標(biāo)為:(﹣4,8).設(shè)直線BC的解析式為:y=kx+b,則解得:∴直線BC的解析式為:y=﹣x+6②,聯(lián)立①②得:或(舍去),∴點(diǎn)E的坐標(biāo)為:(﹣2,7).故答案為(﹣2,7).18、B【解析】

根據(jù)平行線的性質(zhì)即可解決問題【詳解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故選B.【點(diǎn)睛】考查平行線的性質(zhì),解題的關(guān)鍵是熟練掌握平行線的性質(zhì),屬于中考基礎(chǔ)題.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1),;(2)或.【解析】

(1)把點(diǎn)A坐標(biāo)代入可求出m的值即可得反比例函數(shù)解析式;把點(diǎn)A、點(diǎn)C代入可求出k、b的值,即可得一次函數(shù)解析式;(2)聯(lián)立一次函數(shù)和反比例函數(shù)解析式可求出點(diǎn)B的坐標(biāo),根據(jù)圖象,求出一次函數(shù)圖象在反比例函數(shù)圖象的上方時(shí),x的取值范圍即可.【詳解】(1)把代入得.∴反比例函數(shù)的表達(dá)式為把和代入得,解得∴一次函數(shù)的表達(dá)式為.(2)由得∴當(dāng)或時(shí),.【點(diǎn)睛】本題考查了一次函數(shù)和反比例函數(shù)的交點(diǎn)問題,解決問題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式.求反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo)時(shí),把兩個(gè)函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解,則兩者有交點(diǎn),若方程組無解,則兩者無交點(diǎn).20、(1)y=x2+x;(2)t=-4,r=-1.【解析】

(1)由①聯(lián)立方程組,根據(jù)拋物線y=ax2+bx與直線y=x只有一個(gè)交點(diǎn)可以求出b的值,由②可得對稱軸為x=1,從而得a的值,進(jìn)而得出結(jié)論;(2)進(jìn)行分類討論,分別求出t和r的值.【詳解】(1)y=ax2+bx和y=x聯(lián)立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵對稱軸為=1,∴=1,∴a=,∴y=x2+x.(2)因?yàn)閥=x2+x=(x-1)2+,所以頂點(diǎn)(1,)當(dāng)-2<r<1,且r≠0時(shí),當(dāng)x=r時(shí),y最大=r2+r=1.5r,得r=-1,當(dāng)x=-2時(shí),y最小=-4,所以,這時(shí)t=-4,r=-1.當(dāng)r≥1時(shí),y最大=,所以1.5r=,所以r=,不合題意,舍去,綜上可得,t=-4,r=-1.【點(diǎn)睛】本題考查二次函數(shù)綜合題,解題的關(guān)鍵是理解題意,利用二次函數(shù)的性質(zhì)解決問題.21、(1)300,10;(2)有800人;(3).【解析】試題分析:試題解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,圖形如下:(2)2000×40%=800(人),答:估計(jì)該校選擇“跑步”這種活動(dòng)的學(xué)生約有800人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中每班所抽到的兩項(xiàng)方式恰好是“跑步”和“跳繩”的結(jié)果數(shù)為2,所以每班所抽到的兩項(xiàng)方式恰好是“跑步”和“跳繩”的概率=.考點(diǎn):1.用樣本估計(jì)總體;2.扇形統(tǒng)計(jì)圖;3.條形統(tǒng)計(jì)圖;4.列表法與樹狀圖法.22、(1)150人;(2)補(bǔ)圖見解析;(3)144°;(4)300盒.【解析】

(1)根據(jù)喜好A口味的牛奶的學(xué)生人數(shù)和所占百分比,即可求出本次調(diào)查的學(xué)生數(shù).(2)用調(diào)查總?cè)藬?shù)減去A、B、D三種喜好不同口味牛奶的人數(shù),求出喜好C口味牛奶的人數(shù),補(bǔ)全統(tǒng)計(jì)圖.再用360°乘以喜好C口味的牛奶人數(shù)所占百分比求出對應(yīng)中心角度數(shù).(3)用總?cè)藬?shù)乘以A、B口味牛奶喜歡人數(shù)所占的百分比得出答案.【詳解】解:(1)本次調(diào)查的學(xué)生有30÷20%=150人;(2)C類別人數(shù)為150﹣(30+45+15)=60人,補(bǔ)全條形圖如下:(3)扇形統(tǒng)計(jì)圖中C對應(yīng)的中心角度數(shù)是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得出必要的信息是解題的關(guān)鍵.23、(1)證明:∵ABCD是平行四邊形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】證明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF24、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如圖①,當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問題,再根據(jù)對稱性確定D″的坐標(biāo);(II)如圖②,當(dāng)α=60°時(shí),作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問題;(III)分兩種情形分別求解即可解決問題;【詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據(jù)對稱性可知,點(diǎn)D″在線段BC′上時(shí),D″(6,4)也滿足條件.綜上所述,滿足條件的點(diǎn)D坐標(biāo)(10,4)或(6,4).(II)如圖②,當(dāng)α=60°時(shí),作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當(dāng)B、C′、D′共線時(shí),由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論