四川省瀘州市瀘縣第二中學2023-2024學年高一下數(shù)學期末復習檢測模擬試題含解析_第1頁
四川省瀘州市瀘縣第二中學2023-2024學年高一下數(shù)學期末復習檢測模擬試題含解析_第2頁
四川省瀘州市瀘縣第二中學2023-2024學年高一下數(shù)學期末復習檢測模擬試題含解析_第3頁
四川省瀘州市瀘縣第二中學2023-2024學年高一下數(shù)學期末復習檢測模擬試題含解析_第4頁
四川省瀘州市瀘縣第二中學2023-2024學年高一下數(shù)學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省瀘州市瀘縣第二中學2023-2024學年高一下數(shù)學期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖所示,已知正三棱柱的所有棱長均為1,則三棱錐的體積為()A. B. C. D.2.如圖2所示,程序框圖的輸出結果是()A.3 B.4 C.5 D.83.對一切實數(shù),不等式恒成立.則的取值范圍是()A. B.C. D.4.若直線與直線互相平行,則的值為()A.4 B. C.5 D.5.若正實數(shù),滿足,且恒成立,則實數(shù)的取值范圍為()A. B. C. D.6.已知等比數(shù)列中,各項都是正數(shù),且成等差數(shù)列,則等于()A. B. C. D.7.圓與圓的位置關系是()A.外離 B.相交 C.內(nèi)切 D.外切8.如圖是正方體的平面展開圖,則在這個正方體中:①與平行②與是異面直線③與成角

④與是異面直線以上四個命題中,正確命題的個數(shù)是()A.1 B.2 C.3 D.49.設復數(shù)(是虛數(shù)單位),則在復平面內(nèi),復數(shù)對應的點的坐標為()A. B. C. D.10.在銳角三角形中,,,分別為內(nèi)角,,的對邊,已知,,,則的面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且,.則的值是________.12.在平行六面體中,為與的交點,若存在實數(shù),使向量,則__________.13.函數(shù)的值域為______.14.在平面直角坐標系中,點,,若直線上存在點使得,則實數(shù)的取值范圍是_____.15.己知函數(shù),有以下結論:①的圖象關于直線軸對稱②在區(qū)間上單調(diào)遞減③的一個對稱中心是④的最大值為則上述說法正確的序號為__________(請?zhí)钌纤姓_序號).16.已知數(shù)列,其前項和為,若,則在,,…,中,滿足的的個數(shù)為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在我國古代數(shù)學名著《九章算術》中將由四個直角三角形組成的四面體稱為“鱉臑”.已知三棱維P-ABC中,PA⊥底面ABC.(1)從三棱錐P-ABC中選擇合適的兩條棱填空_________⊥________,則該三棱錐為“鱉臑”;(2)如圖,已知AD⊥PB垂足為D,AE⊥PC,垂足為E,∠ABC=90°.(i)證明:平面ADE⊥平面PAC;(ii)作出平面ADE與平面ABC的交線l,并證明∠EAC是二面角E-l-C的平面角.(在圖中體現(xiàn)作圖過程不必寫出畫法)18.某學校為了了解高三文科學生第一學期數(shù)學的復習效果.從高三第一學期期末考試成績中隨機抽取50名文科考生的數(shù)學成績,分成6組制成如圖所示的頻率分布直方圖.(1)試利用此頻率分布直方圖求的值及這50名同學數(shù)學成績的平均數(shù)的估計值;(2)該學校為制定下階段的復習計劃,從被抽取的成績在的同學中選出3位作為代表進行座談,若已知被抽取的成績在的同學中男女比例為,求至少有一名女生參加座談的概率.19.已知的頂點都在單位圓上,角的對邊分別為,且.(1)求的值;(2)若,求的面積.20.已知向量,,且(1)求·及;(2)若,求的最小值21.正項數(shù)列:,滿足:是公差為的等差數(shù)列,是公比為2的等比數(shù)列.(1)若,求數(shù)列的所有項的和;(2)若,求的最大值;(3)是否存在正整數(shù),滿足?若存在,求出的值;若不存在,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

利用等體法即可求解.【詳解】三棱錐的體積等于三棱錐的體積,因此,三棱錐的體積為,故選:A.【點睛】本題考查了等體法求三棱錐的體積、三棱錐的體積公式,考查了轉化與化歸思想的應用,屬于基礎題.2、B【解析】

由框圖可知,①,滿足條件,則;②,滿足條件,則;③,滿足條件,則;④,不滿足條件,輸出;故選B3、A【解析】

時,恒成立.時,原不等式等價于.由的最小值是2,可得,即.選A.4、C【解析】

根據(jù)兩條存在斜率的直線平行,斜率相等且在縱軸上的截距不相等這一性質(zhì),可以求出的值.【詳解】直線的斜率為,在縱軸的截距為,因此若直線與直線互相平行,則一定有直線的斜率為,在縱軸的截距不等于,于是有且,解得,故本題選C.【點睛】本題考查了已知兩直線平行求參數(shù)問題.其時本題也可以運用下列性質(zhì)解題:若直線與直線平行,則有且.5、B【解析】

根據(jù),結合基本不等式可求得,從而得到關于的不等式,解不等式求得結果.【詳解】由題意知:,,(當且僅當,即時取等號),解得:本題正確選項:【點睛】本題考查利用基本不等式求解和的最小值問題,關鍵是配湊出符合基本不等式的形式,從而求得最值.6、C【解析】

由條件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求運算求得結果.【詳解】∵等比數(shù)列{an}中,各項都是正數(shù),且a1,a3,2a2成等差數(shù)列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故選:C.【點睛】本題主要考查等差中項的性質(zhì),等比數(shù)列的通項公式,考查了整體化的運算技巧,屬于基礎題.7、D【解析】

根據(jù)圓的方程求得兩圓的圓心和半徑,根據(jù)圓心距和兩圓半徑的關系可確定位置關系.【詳解】由圓的方程可知圓圓心為,半徑;圓圓心為,半徑圓心距為:兩圓的位置關系為:外切本題正確選項:【點睛】本題考查圓與圓的位置關系的判定,關鍵是能夠通過圓的方程確定兩圓的圓心和半徑,從而根據(jù)圓心距和半徑的關系確定位置關系.8、B【解析】

把平面展開圖還原原幾何體,再由棱柱的結構特征及異面直線定義、異面直線所成角逐一核對四個命題得答案.【詳解】把平面展開圖還原原幾何體如圖:由正方體的性質(zhì)可知,與異面且垂直,故①錯誤;與平行,故②錯誤;連接,則,為與所成角,連接,可知為正三角形,則,故③正確;由異面直線的定義可知,與是異面直線,故④正確.∴正確命題的個數(shù)是2個.故選:B.【點睛】本題考查棱柱的結構特征,考查異面直線定義及異面直線所成角,是中檔題.9、A【解析】,所以復數(shù)對應的點為,故選A.10、D【解析】由結合題意可得:,故,△ABC為銳角三角形,則,由題意結合三角函數(shù)的性質(zhì)有:,則:,即:,則,由正弦定理有:,故.本題選擇D選項.點睛:在解決三角形問題中,求解角度值一般應用余弦定理,因為余弦定理在內(nèi)具有單調(diào)性,求解面積常用面積公式,因為公式中既有邊又有角,容易和正弦定理、余弦定理聯(lián)系起來.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】

.12、【解析】

在平行六面體中把向量用用表示,再利用待定系數(shù)法,求得.再求解?!驹斀狻咳鐖D所示:因為,又因為,所以,所以.故答案為:【點睛】本題主要考查了空間向量的基本定理,還考查了運算求解的能力,屬于基礎題.13、【解析】

由反三角函數(shù)的性質(zhì)得到,即可求得函數(shù)的值域.【詳解】由,則,,又,,即,函數(shù)的值域為.故答案:.【點睛】本題考查反三角函數(shù)的性質(zhì)及其應用,屬于基礎題.14、.【解析】

設由,求出點軌跡方程,可判斷其軌跡為圓,點又在直線,轉化為直線與圓有公共點,只需圓心到直線的距離小于半徑,得到關于的不等式,求解,即可得出結論.【詳解】設,,,,整理得,又點在直線,直線與圓共公共點,圓心到直線的距離,即.故答案為:.【點睛】本題考查求曲線的軌跡方程,考查直線與圓的位置關系,屬于中檔題.15、②④【解析】

根據(jù)三角函數(shù)性質(zhì),逐一判斷選項得到答案.【詳解】,根據(jù)圖像知:①的圖象關于直線軸對稱,錯誤②在區(qū)間上單調(diào)遞減,正確③的一個對稱中心是,錯誤④的最大值為,正確故答案為②④【點睛】本題考查了三角函數(shù)的化簡,三角函數(shù)的圖像,三角函數(shù)性質(zhì),意在考查學生對于三角函數(shù)的綜合理解和應用.16、1【解析】

運用周期公式,求得,運用誘導公式及三角恒等變換,化簡可得,即可得到滿足條件的的值.【詳解】解:,可得周期,,則滿足的的個數(shù)為.故答案為:1.【點睛】本題考查三角函數(shù)的周期性及應用,考查三角函數(shù)的化簡和求值,以及運算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)見證明;(ii)見解析【解析】

(1)根據(jù)已知填BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC均可;(2)(i)先證明PC⊥平面ADE,再證明平面ADE⊥平面PAC;(ii)在平面PBC中,記DE∩BC,=F,連結AF,則AF為所求的l.再證明∠EAC是二面角E-l-C的平面角.【詳解】(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)在三棱錐P-ABC中,BC⊥AB,BC⊥PA,BC∩PA=A,所以BC⊥平面PAB,又AD?平面PAB,所以BC⊥AD,又AD⊥PB,PB∩BC=B,所以AD⊥平面PBC.又PC?平面PBC,所以PC⊥AD,因為AE⊥PC且AE∩AD=A,所以PC⊥平面ADE,因為PC?平面PAC,所以平面ADE⊥平面PAC.(ii)在平面PBC中,記DE∩BC=F,連結AF,則AF為所求的l.因為PC⊥平面AED,l?平面AED,所以PC⊥l,因為PA⊥平面ABC,l?平面ABC,所以PA⊥l,又PA∩PC=P,所以l⊥平面PAC.又AE?平面PAC且AC?平面PAC,所以AE⊥l,AC⊥l.所以∠EAC就是二面角E-l-C的一個平面角.【點睛】本題主要考查空間線面位置關系,面面角的作圖及證明,屬于中檔題.18、(1);平均數(shù)的估計值(2)【解析】

(1)根據(jù)各小矩形面積和為1可求得的值;由頻率分布直方圖,結合平均數(shù)的求法即可求解.(2)根據(jù)頻率分布直方圖先求得成績在的同學人數(shù),結合分層抽樣可得男生4人,女生2人,設男生分別為;女生分別為,利用列舉法可得抽取3人的所有情況,進而得至少有一名女生的情況,即可由古典概型概率公式求解.【詳解】(1)由題,解得,由頻率分布直方圖,得這50名同學數(shù)學成績的平均數(shù)的估計值為:(2)由頻率分布直方圖知,成績在的同學有人,由比例可知男生4人,女生2人,記男生分別為;女生分別為,則從6名同學中選出3人的所有可能如下:共20種,其中不含女生的有4種,設至少有一名女生參加座談為事件,則至少有一名女生參加座談的概率.【點睛】本題考查了頻率分布直方圖的性質(zhì)及平均數(shù)求法,分層抽樣及各組人數(shù)的確定方法,列舉法求古典概型的概率,屬于基礎題.19、(1);(2)【解析】分析:(1)由正弦定理,兩角和的正弦函數(shù)公式化簡已知可得,又,即可求得的值;(2)由同角三角函數(shù)基本關系式可求的值,由于的頂點都在單位圓上,利用正弦定理可得,可求,利用余弦定理可得的值,利用三角形面積公式即可得解.詳解:(1)∵,由正弦定理得:,,又∵,,∴,所以.(2)由得,,因為的頂點在單位圓上,所以,所以,由余弦定理,..點睛:本題主要考查了正弦定理、兩角和的正弦函數(shù)公式、同角三角函數(shù)基本關系式、余弦定理、三角形面積公式在解三角形中的應用,熟練掌握相關公式是解題的關鍵,考查了轉化思想和數(shù)形結合思想的應用,屬于中檔題.20、(1)見解析;(2).【解析】

(1)運用向量數(shù)量積的坐標表示,求出·;運用平面向量的坐標運算公式求出,然后求出模.(2)根據(jù)上(1)求出函數(shù)的解析式,配方,利用二次函數(shù)的性質(zhì)求出最小值.【詳解】(1)∵∴∴(2)∵∴∴【點睛】本題考查了平面向量數(shù)量積的坐標表示,以及平面向量的坐標加法運算公式.重點是二次函數(shù)求最小值問題.21、(1)84;(2)1033;(3)存在,【解析】

(1)由題意可得:,即為:2,4,6,8,10,12,14,16,8,4;可得的值;(2)由題意可得,故有;即,即必是2的整數(shù)冪,要最大,必需最大,,可得出的最大值;(3)由是公差為的等差數(shù)列,是公比為2的等比數(shù)列,可得與,可得k與m的方程,一一驗算k的值可得答案.【詳解】解:(1)由已知,故為:2,4,6,8,10,12,14,16;公比為2,則對應的數(shù)為2,4,8,16

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論