2024屆廣東省實驗中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2024屆廣東省實驗中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2024屆廣東省實驗中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2024屆廣東省實驗中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2024屆廣東省實驗中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆廣東省實驗中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等比數(shù)列中,,,則()A.140 B.120 C.100 D.802.圓與圓恰有三條公切線,則實數(shù)的值是()A.4 B.6 C.16 D.363.在中,角A,B,C所對的邊分別為a,b,c,若,,則的值為()A. B. C. D.4.已知數(shù)列的前項和為,且,,則()A.200 B.210 C.400 D.4105.已知圓的圓心為(-2,1),其一條直徑的兩個端點恰好在兩坐標(biāo)軸上,則這個圓的方程是()A. B.C. D.6.已知函數(shù)fxA.fx的最小正周期為π,最大值為B.fx的最小正周期為π,最大值為C.fx的最小正周期為2πD.fx的最小正周期為2π7.連續(xù)擲兩次骰子,分別得到的點數(shù)作為點的坐標(biāo),則點落在圓內(nèi)的概率為A. B. C. D.8.設(shè)直線系.下列四個命題中不正確的是()A.存在一個圓與所有直線相交B.存在一個圓與所有直線不相交C.存在一個圓與所有直線相切D.M中的直線所能圍成的正三角形面積都相等9.意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13,21,….該數(shù)列的特點是:前兩個數(shù)都是1,從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和,人們把這樣的一列數(shù)組成的數(shù)列稱為“斐波那契數(shù)列”,則().A.1 B.2019 C. D.10.已知實數(shù)滿足,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則________12.如圖,直三棱柱中,,,,外接球的球心為О,點E是側(cè)棱上的一個動點.有下列判斷:①直線AC與直線是異面直線;②一定不垂直;③三棱錐的體積為定值;④的最小值為⑤平面與平面所成角為其中正確的序號為_______13.在等差數(shù)列中,若,則__________.14.已知直線,圓O:上到直線的距離等于2的點有________個。15.已知函數(shù),則函數(shù)的最小值是___.16.當(dāng),時,執(zhí)行完如圖所示的一段程序后,______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.四棱柱中,底面為正方形,,為中點,且.(1)證明;(2)求點到平面的距離.18.直線的方程為.(1)若在兩坐標(biāo)軸上的截距相等,求的值;(2)若不經(jīng)過第二象限,求實數(shù)的取值范圍.19.某市地鐵全線共有四個車站,甲、乙兩人同時在地鐵第1號車站(首發(fā)站)乘車,假設(shè)每人自第2號站開始,在每個車站下車是等可能的,約定用有序?qū)崝?shù)對表示“甲在號車站下車,乙在號車站下車”(Ⅰ)用有序?qū)崝?shù)對把甲、乙兩人下車的所有可能的結(jié)果列舉出來;(Ⅱ)求甲、乙兩人同在第3號車站下車的概率;(Ⅲ)求甲、乙兩人在不同的車站下車的概率.20.某高速公路隧道內(nèi)設(shè)雙行線公路,其截面由一段圓弧和一個長方形的三邊構(gòu)成(如圖所示).已知隧道總寬度為,行車道總寬度為,側(cè)墻面高,為,弧頂高為.()建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求圓弧所在的圓的方程.()為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有.請計算車輛通過隧道的限制高度是多少.21.如圖,在斜三棱柱中,側(cè)面是邊長為的菱形,平面,,點在底面上的射影為棱的中點,點在平面內(nèi)的射影為證明:為的中點:求三棱錐的體積

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

,計算出,然后將,得到答案.【詳解】等比數(shù)列中,又因為,所以,所以,故選D項.【點睛】本題考查等比數(shù)列的基本量計算,屬于簡單題.2、C【解析】

兩圓外切時,有三條公切線.【詳解】圓標(biāo)準(zhǔn)方程為,∵兩圓有三條公切線,∴兩圓外切,∴,.故選C.【點睛】本題考查圓與圓的位置關(guān)系,考查直線與圓的位置關(guān)系.兩圓的公切線條數(shù):兩圓外離時,有4條公切線,兩圓外切時,有3條公切線,兩圓相交時,有2條公切線,兩圓內(nèi)切時,有1條公切線,兩圓內(nèi)含時,無無公切線.3、D【解析】

由正弦定理及余弦定理可得,,然后求解即可.【詳解】解:由可得,則,①又,所以,即,所以②由①②可得:,由余弦定理可得,故選:D.【點睛】本題考查了正弦定理及余弦定理的綜合應(yīng)用,重點考查了兩角和的正弦公式,屬中檔題.4、B【解析】

首先利用遞推關(guān)系式求出數(shù)列的通項公式,進一步利用等差數(shù)列的前項和公式的應(yīng)用求出結(jié)果.【詳解】由題,,又因為所以當(dāng)時,可解的當(dāng)時,,與相減得當(dāng)為奇數(shù)時,數(shù)列是以為首相,為公差的等差數(shù)列,當(dāng)為偶數(shù)時,數(shù)列是以為首相,為公差的等差數(shù)列,所以當(dāng)為正整數(shù)時,,則故選B.【點睛】本題考查的知識點有數(shù)列通項公式的求法及應(yīng)用,等差數(shù)列的前項和公式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)化能力,屬于一般題.5、C【解析】設(shè)直徑的兩個端點分別A(a,2)、B(2,b),圓心C為點(-1,1),由中點坐標(biāo)公式得解得a=-4,b=1.∴半徑r=∴圓的方程是:(x+1)1+(y-1)1=5,即x1+y1+4x-1y=2.故選C.6、B【解析】

首先利用余弦的倍角公式,對函數(shù)解析式進行化簡,將解析式化簡為fx【詳解】根據(jù)題意有fx所以函數(shù)fx的最小正周期為T=且最大值為fx【點睛】該題考查的是有關(guān)化簡三角函數(shù)解析式,并且通過余弦型函數(shù)的相關(guān)性質(zhì)得到函數(shù)的性質(zhì),在解題的過程中,要注意應(yīng)用余弦倍角公式將式子降次升角,得到最簡結(jié)果.7、B【解析】

由拋擲兩枚骰子得到點的坐標(biāo)共有36種,再利用列舉法求得點落在圓內(nèi)所包含的基本事件的個數(shù),利用古典概型的概率計算公式,即可求解.【詳解】由題意知,試驗發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點數(shù)作為點P的坐標(biāo),共有種結(jié)果,而滿足條件的事件是點P落在圓內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式,可得,故選B.【點睛】本題主要考查的是古典概型及其概率計算公式.,屬于基礎(chǔ)題.解題時要準(zhǔn)確理解題意,先要判斷該概率模型是不是古典概型,正確找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù),令古典概型及其概率的計算公式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.8、D【解析】

對于含變量的直線問題可采用賦特殊值法進行求解【詳解】因為所以點到中每條直線的距離即為圓的全體切線組成的集合,所以存在圓心在,半徑大于1的圓與中所有直線相交,A正確也存在圓心在,半徑小于1的圓與中所有直線均不相交,B正確也存在圓心在半徑等于1的圓與中所有直線相切,C正確故正確因為中的直線與以為圓心,半徑為1的圓相切,所以中的直線所能圍成的正三角形面積不都相等,如圖

均為等邊三角形而面積不等,故錯誤,答案選D.【點睛】本題從點到直線的距離關(guān)系出發(fā),考查了圓的切線與圓的位置關(guān)系,解決此類題型應(yīng)學(xué)會將條件進行有效轉(zhuǎn)化.9、A【解析】

計算部分數(shù)值,歸納得到,計算得到答案.【詳解】;;;…歸納總結(jié):故故選:【點睛】本題考查了數(shù)列的歸納推理,意在考查學(xué)生的推理能力.10、D【解析】

作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.【詳解】由線性約束條件作出可行域,如下圖三角形陰影部分區(qū)域(含邊界),令,直線:,平移直線,當(dāng)過點時取得最大值,當(dāng)過點時取得最小值,所以的取值范圍是.【點睛】本題主要考查線性規(guī)劃的應(yīng)用.本題先正確的作出不等式組表示的平面區(qū)域,再結(jié)合目標(biāo)函數(shù)的幾何意義進行解答是解決本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接利用反三角函數(shù)求解角的大小,即可得到答案.【詳解】因為,,根據(jù)反三角函數(shù)的性質(zhì),可得.故答案為:.【點睛】本題主要考查了三角方程的解法,以及反三角函數(shù)的應(yīng)用,屬于基礎(chǔ)題.12、①③④⑤【解析】

由異面直線的概念判斷①;利用線面垂直的判定與性質(zhì)判斷②;找出球心,由棱錐底面積與高為定值判斷③;設(shè),列出關(guān)于的函數(shù)關(guān)系式,結(jié)合其幾何意義,求出最小值判斷④;由面面成角的定義判斷⑤【詳解】對于①,因為直線經(jīng)過平面內(nèi)的點,而直線在平面內(nèi),且不過點,所以直線與直線是異面直線,故①正確;對于②,當(dāng)點所在的位置滿足時,又,,平面,所以平面,又平面,所以,故②錯誤;對于③,由題意知,直三棱柱的外接球的球心是與的交點,則的面積為定值,由平面,所以點到平面的距離為定值,所以三棱錐的體積為定值,故③正確;對于④,設(shè),則,所以,由其幾何意義,即直角坐標(biāo)平面內(nèi)動點與兩定點,距離和的最小值知,其最小值為,故④正確;對于⑤,由直棱柱可知,,,則即為平面與平面所成角,因為,,所以,故⑤正確;綜上,正確的有①③④⑤,故答案為:①③④⑤【點睛】本題考查異面直線的判定,考查面面成角,考查線線垂直的判定,考查轉(zhuǎn)化思想13、【解析】

利用等差數(shù)列廣義通項公式,將轉(zhuǎn)化為,從而求出的值,再由廣義通項公式求得.【詳解】在等差數(shù)列中,由,,得,即..故答案為:1.【點睛】本題考查等差數(shù)列廣義通項公式的運用,考查基本量法求解數(shù)列問題,屬于基礎(chǔ)題.14、3;【解析】

根據(jù)圓心到直線的距離和半徑之間的長度關(guān)系,可通過圖形確定所求點的個數(shù).【詳解】由圓的方程可知,圓心坐標(biāo)為,半徑圓心到直線的距離:如上圖所示,此時,則到直線距離為的點有:,共個本題正確結(jié)果:【點睛】本題考查根據(jù)圓與直線的位置關(guān)系求解圓上點到直線距離為定值的點的個數(shù),關(guān)鍵是能夠根據(jù)圓心到直線的距離確定直線的大致位置,從而根據(jù)半徑長度確定點的個數(shù).15、5【解析】因為,所以,函數(shù),當(dāng)且僅當(dāng),即時等號成立.點睛:本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.在用基本不等式時,注意"一正二定三相等"這三個條件,關(guān)鍵是找定值,在本題中,將拆成,湊成定值,再用基本不等式求出最小值.16、1【解析】

模擬程序運行,可得出結(jié)論.【詳解】時,滿足,所以.故答案為:1.【點睛】本題考查程序框圖,考查條件結(jié)構(gòu),解題時模擬程序運行即可.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】試題分析:(1)證明線線垂直,一般利用線面垂直性質(zhì)定理,即利用線面垂直進行證明,而證明線面垂直,則利用線面垂直判定定理,即從已知的線線垂直出發(fā)給予證明,本題利用平幾知識,如等邊三角形性質(zhì)、正方形性質(zhì)得線線垂直,(2)求點到直線距離,一般方法利用等體積法轉(zhuǎn)化為求高.試題解析:(1)等邊中,為中點,又,且在正方形中,(2)中,,由(1)知,等體積法可得點到平面的距離為.18、(1)0或2;(2).【解析】

(1)當(dāng)過坐標(biāo)原點時,可求得滿足題意;當(dāng)不過坐標(biāo)原點時,可根據(jù)直線截距式,利用截距相等構(gòu)造方程求得結(jié)果;(2)當(dāng)時,可得直線不經(jīng)過第二象限;當(dāng)時,結(jié)合函數(shù)圖象可知斜率為正,且在軸截距小于等于零,從而構(gòu)造不等式組求得結(jié)果.【詳解】(1)當(dāng)過坐標(biāo)原點時,,解得:,滿足題意當(dāng)不過坐標(biāo)原點時,即時若,即時,,不符合題意若,即時,方程可整理為:,解得:綜上所述:或(2)當(dāng),即時,,不經(jīng)過第二象限,滿足題意當(dāng),即時,方程可整理為:,解得:綜上所述:的取值范圍為:【點睛】本題考查直線方程的應(yīng)用,涉及到直線截距式方程、由圖象確定參數(shù)范圍等知識;易錯點是在截距相等時,忽略經(jīng)過坐標(biāo)原點的情況,造成丟根.19、(Ⅰ)(2,2)、(2,3)、(2,4)、(3,2)、(3,3)、(3,4)、(4,2)、(4,3)、(4,4)(Ⅱ)(Ⅲ)【解析】(Ⅰ)甲、乙兩人下車的所有可能的結(jié)果為(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)(Ⅱ)設(shè)甲、乙兩人同在第3號車站下車的的事件為A,則(Ⅲ)設(shè)甲、乙兩人在不同的車站下車的事件為B,則20、(1);(2)3.5【解析】試題分析:(1)建立直角坐標(biāo)系,設(shè)圓一般方程,根據(jù)三點E,F,M坐標(biāo)解出參數(shù)(2)根據(jù)題意求出圓上橫坐標(biāo)等于c點橫坐標(biāo)的縱坐標(biāo),再根據(jù)要求在豎直方向上的高度之差至少要有得車輛通過隧道的限制高度試題解析:(1)以所在直線為軸,以所在直線為軸,以1m為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論