天津市一中2024年高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第1頁
天津市一中2024年高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第2頁
天津市一中2024年高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第3頁
天津市一中2024年高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第4頁
天津市一中2024年高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

天津市一中2024年高一數(shù)學第二學期期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則()A. B. C.-7 D.72.在中,若,,,則角的大小為()A.30° B.45°或135° C.60° D.135°3.在計算機BASIC語言中,函數(shù)表示整數(shù)a被整數(shù)b除所得的余數(shù),如.用下面的程序框圖,如果輸入的,,那么輸出的結果是()A.7 B.21 C.35 D.494.如圖,向量,,,則向量可以表示為()A.B.C.D.5.已知函數(shù)是奇函數(shù),將的圖像上所有點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖像對應的函數(shù)為.若的最小正周期為,且,則()A. B. C. D.6.已知、是球的球面上的兩點,,點為該球面上的動點,若三棱錐體積的最大值為,則球的表面積為()A. B. C. D.7.在同一直角坐標系中,函數(shù)且的圖象可能是()A. B.C. D.8.已知a,b,c為△ABC的三個內角A,B,C的對邊,向量=,=(cosA,sinA),若與夾角為,則acosB+bcosA=csinC,則角B等于()A. B. C. D.9.若是函數(shù)的兩個不同的零點,且這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則的值等于()A.1 B.5 C.9 D.410.長方體共頂點的三個相鄰面面積分別為,這個長方體的頂點在同一個球面上,則這個球的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知是內的一點,,,則_______;若,則_______.12.若把寫成的形式,則______.13.已知等差數(shù)列的公差為,且,其前項和為,若滿足,,成等比數(shù)列,且,則______,______.14.______.15.已知的內角、、的對邊分別為、、,若,,且的面積是,___________.16.記Sn為等比數(shù)列{an}的前n項和.若,則S5=____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=.(1)若不等式k≤xf(x)+在x∈[1,3]上恒成立,求實數(shù)k的取值范圍;(2)當x∈(m>0,n>0)時,函數(shù)g(x)=tf(x)+1(t≥0)的值域為[2-3m,2-3n],求實數(shù)t的取值范圍.18.設的內角為所對的邊分別為,且.(1)求角的大?。唬?)若,求的周長的取值范圍.19.的內角的對邊為,(1)求;(2)若求.20.已知三角形的三個頂點.(1)求BC邊所在直線的方程;(2)求BC邊上的高所在直線方程.21.已知函數(shù).(1)若,且對任意的,恒成立,求實數(shù)的取值范圍;(2)求,解關于的不等式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

把已知等式平方后可求得.【詳解】∵,∴,即,,∵,∴,∴,,∴.故選C.【點睛】本題考查同角間的三角函數(shù)關系,考查兩角和的正切公式,解題關鍵是把已知等式平方,并把1用代替,以求得.2、B【解析】

利用正弦定理得到答案.【詳解】在中正弦定理:或故答案選B【點睛】本題考查了正弦定理,屬于簡單題.3、B【解析】

模擬執(zhí)行循環(huán)體,即可得到輸出值.【詳解】,,,,繼續(xù)執(zhí)行得,,繼續(xù)執(zhí)行得,,結束循環(huán),輸出.故選:B.【點睛】本題考查循環(huán)體的執(zhí)行,屬程序框圖基礎題.4、C【解析】

利用平面向量加法和減法的運算,求得的線性表示.【詳解】依題意,即,故選C.【點睛】本小題主要考查平面向量加法和減法的運算,屬于基礎題.5、C【解析】

只需根據(jù)函數(shù)性質逐步得出值即可?!驹斀狻恳驗闉槠婧瘮?shù),∴;又,,又∴,故選C?!军c睛】本題考查函數(shù)的性質和函數(shù)的求值問題,解題關鍵是求出函數(shù)。6、A【解析】

當點位于垂直于面的直徑端點時,三棱錐的體積最大,利用三棱錐體積的最大值為,求出半徑,即可求出球的表面積.【詳解】如圖所示,當點位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,.因此,球的表面積為.故選:A.【點睛】本題考查球的半徑與表面積的計算,確定點的位置是關鍵,考查分析問題和解決問題的能力,屬于中等題.7、D【解析】

本題通過討論的不同取值情況,分別討論本題指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和,結合選項,判斷得出正確結論.題目不難,注重重要知識、基礎知識、邏輯推理能力的考查.【詳解】當時,函數(shù)過定點且單調遞減,則函數(shù)過定點且單調遞增,函數(shù)過定點且單調遞減,D選項符合;當時,函數(shù)過定點且單調遞增,則函數(shù)過定點且單調遞減,函數(shù)過定點且單調遞增,各選項均不符合.綜上,選D.【點睛】易出現(xiàn)的錯誤有,一是指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和性質掌握不熟,導致判斷失誤;二是不能通過討論的不同取值范圍,認識函數(shù)的單調性.8、B【解析】

根據(jù)向量夾角求得角的度數(shù),再利用正弦定理求得即得解.【詳解】由已知得:所以所以由正弦定理得:所以又因為所以因為所以所以故選B.【點睛】本題考查向量的數(shù)量積和正弦定理,屬于中檔題.9、C【解析】試題分析:由韋達定理得,,則,當適當排序后成等比數(shù)列時,必為等比中項,故,.當適當排序后成等差數(shù)列時,必不是等差中項,當是等差中項時,,解得,;當是等差中項時,,解得,,綜上所述,,所以.考點:等差中項和等比中項.10、A【解析】

設長方體的棱長為,球的半徑為,根據(jù)題意有,再根據(jù)球的直徑是長方體的體對角線求解.【詳解】設長方體的棱長為,球的半徑為,根據(jù)題意,,解得,所以,所以外接球的表面積,故選:A【點睛】本題主要考查了球的組合體問題,還考查了運算求解的能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

對式子兩邊平方,再利用向量的數(shù)量積運算即可;式子兩邊分別與向量,進行數(shù)量積運算,得到關于的方程組,解方程組即可得答案.【詳解】∵,∴;∵,∴解得:,∴.故答案為:;.【點睛】本題考查向量數(shù)量積的運算,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意將向量等式轉化為數(shù)量關系的方法.12、【解析】

將角度化成弧度,再用象限角的表示方法求解即可.【詳解】解:.故答案為:.【點睛】本題考查弧度與角度的互化,象限角的表示,屬于基礎題.13、2【解析】

由,可求出,再由,,成等比數(shù)列,可建立關系式,求出,進而求出即可.【詳解】由,可知,即,又,,成等比數(shù)列,所以,則,即,解得或,因為,所以,,所以.故答案為:2;.【點睛】本題考查等比數(shù)列的性質,考查等差數(shù)列前項和的求法,考查學生的計算求解能力,屬于基礎題.14、【解析】

,,故答案為.考點:三角函數(shù)誘導公式、切割化弦思想.15、【解析】

利用同角三角函數(shù)計算出的值,利用三角形的面積公式和條件可求出、的值,再利用余弦定理求出的值.【詳解】,,,且的面積是,,,,,由余弦定理得,.故答案為.【點睛】本題考查利用余弦定理解三角形,同時也考查了同角三角函數(shù)的基本關系、三角形面積公式的應用,考查運算求解能力,屬于中等題.16、.【解析】

本題根據(jù)已知條件,列出關于等比數(shù)列公比的方程,應用等比數(shù)列的求和公式,計算得到.題目的難度不大,注重了基礎知識、基本計算能力的考查.【詳解】設等比數(shù)列的公比為,由已知,所以又,所以所以.【點睛】準確計算,是解答此類問題的基本要求.本題由于涉及冪的乘方運算、繁分式分式計算,部分考生易出現(xiàn)運算錯誤.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)k≤1;(2)(0,1).【解析】試題分析:(1)把f(x)=代入,化簡得k≤x在[1,3]上恒成立,所以k≤1.(2)g(x)=tf(x)+1=-+t+1,又x∈(m>0,n>0),所以g(x)在單調遞增,所以即,即m,n是關于x的方程tx2-3x+1-t=0的兩個不等的正根.由根的分布,可得,解得0<t<1.試題解析:(1)∵xf(x)+=+=x,∴不等式k≤xf(x)+在x∈[1,3]上恒成立,即為k≤x在[1,3]上恒成立.∴k≤1.(2)∵g(x)=tf(x)+1=-+t+1,若t=0,則g(x)=1,不合題意,∴t>0.又當t>0時,g(x)=-+t+1在上顯然是單調增函數(shù),∴即∴m,n是關于x的方程tx2-3x+1-t=0的兩個不等的正根.令h(x)=tx2-3x+1-t,則解得0<t<1.∴實數(shù)t的取值范圍是(0,1).18、(1);(2).【解析】試題分析:(1)已知,由余弦定理角化邊得,再由余弦定理可得角的值;(2)根據(jù)與,由正弦定理求得,,結合代入到的周長表達式,利用三角恒等變換化簡得到的周長關于角的三角函數(shù),再根據(jù)正弦函數(shù)的圖象與性質,即可求解周長的取值范圍.試題解析:(1),由余弦定理,得,,∵.(2).由正弦定理,得,同理可得,的周長,,的周長,故的周長的取值范圍為.點睛:在解三角形的范圍問題時往往要運用正弦定理或余弦定理轉化為角度的范圍問題,這樣可以利用輔助角公式進行化簡,再根據(jù)角的范圍求得最后的結果.19、(1);(2).【解析】

(1)由題目中告訴的,利用正弦定理則可得到,再結合余弦定理公式求出角的值.(2)根據(jù)第一問求得的的值和題目中告訴的角的值可求得角的值,再利用正弦定理可求得邊和的值.【詳解】(1)由正弦定理,得,由余弦定理,得,又所以.(2)由(1)知:,又所以,又,根據(jù)正弦定理,得,,所以【點睛】本題考查利用正余弦定理求解邊與角.20、(1)(2)【解析】

(1)由已知條件結合直線的兩點式方程的求法求解即可;(2)先求出直線BC的斜率,再求出BC邊上的高所在直線的斜率,然后利用直線的點斜式方程的求法求解即可.【詳解】解:(1),,直線BC的方程為,即.(2),直線BC邊上的高所在的直線的斜率為,又,直線BC邊上的高的方程為:,即BC邊上的高所在直線方程為.【點睛】本題考查了直線的兩點式方程的求法,重點考查了直線的位置關系及直線的點斜式方程的求法,屬基礎題.21、(1)(2)見解析【解析】

(1)由題意,若,則函數(shù)關于對稱,根據(jù)二次函數(shù)對稱性,可求,代入化簡得在上恒成立,由,知當為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論