遼寧省營(yíng)口中學(xué)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)
遼寧省營(yíng)口中學(xué)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)
遼寧省營(yíng)口中學(xué)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)
遼寧省營(yíng)口中學(xué)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)
遼寧省營(yíng)口中學(xué)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省營(yíng)口中學(xué)2024屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)在區(qū)間內(nèi)單調(diào)遞增,且,若,,,則、、的大小關(guān)系為()A. B. C. D.2.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=S4,則S13=()A.13 B.7 C.0 D.13.在1和19之間插入個(gè)數(shù),使這個(gè)數(shù)成等差數(shù)列,若這個(gè)數(shù)中第一個(gè)為,第個(gè)為,當(dāng)取最小值時(shí),的值是()A.4 B.5 C.6 D.74.設(shè)的內(nèi)角,,所對(duì)的邊分別為,,,且,,面積的最大值為()A.6 B.8 C.7 D.95.中,角的對(duì)邊分別為,且,則角()A. B. C. D.6.某幾何體的三視圖如圖所示,則它的體積是()A.B.C.D.7.設(shè)等比數(shù)列的前項(xiàng)和為,若,則()A. B.2 C. D.8.的內(nèi)角的對(duì)邊分別是,若,,,則()A. B. C. D.9.以拋物線C的頂點(diǎn)為圓心的圓交C于A、B兩點(diǎn),交C的準(zhǔn)線于D、E兩點(diǎn).已知|AB|=,|DE|=,則C的焦點(diǎn)到準(zhǔn)線的距離為()A.2 B.4 C.6 D.810.已知直線3x?y+1=0的傾斜角為α,則A. B.C.? D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)直線與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若,則圓C的面積為________12.某地甲乙丙三所學(xué)校舉行高三聯(lián)考,三所學(xué)校參加聯(lián)考的人數(shù)分別為200、300、400?,F(xiàn)為了調(diào)查聯(lián)考數(shù)學(xué)學(xué)科的成績(jī),采用分層抽樣的方法在這三所學(xué)校中抽取一個(gè)樣本,已知甲學(xué)校中抽取了40名學(xué)生的數(shù)學(xué)成績(jī),那么在丙學(xué)校中抽取的數(shù)學(xué)成績(jī)?nèi)藬?shù)為_________。13.函數(shù)的最小正周期是______.14.設(shè),,,則,,從小到大排列為______15.如圖,正方形中,分別為邊上點(diǎn),且,,則________.16.某單位共有200名職工參加了50公里徒步活動(dòng),其中青年職工與老年職工的人數(shù)比為,中年職工有24人,現(xiàn)采取分層抽樣的方法抽取50人參加對(duì)本次活動(dòng)滿意度的調(diào)查,那么應(yīng)抽取老年職工的人數(shù)為________人.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.已知數(shù)列為等差數(shù)列,為前項(xiàng)和,,(1)求的通項(xiàng)公式;(2)設(shè),比較與的大小;(3)設(shè)函數(shù),,求,和數(shù)列的前項(xiàng)和.18.在正方體中.(1)求證:;(2)是中點(diǎn)時(shí),求直線與面所成角.19.如圖,在三棱錐中,側(cè)面與側(cè)面均為邊長(zhǎng)為2的等邊三角形,,為中點(diǎn).(1)證明:;(2)求點(diǎn)到平面的距離.20.已知直線:及圓心為的圓:.(1)當(dāng)時(shí),求直線與圓相交所得弦長(zhǎng);(2)若直線與圓相切,求實(shí)數(shù)的值.21.已知向量,向量.(1)求向量的坐標(biāo);(2)當(dāng)為何值時(shí),向量與向量共線.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

由偶函數(shù)的性質(zhì)可得出函數(shù)在區(qū)間上為減函數(shù),由對(duì)數(shù)的性質(zhì)可得出,由偶函數(shù)的性質(zhì)得出,比較出、、的大小關(guān)系,再利用函數(shù)在區(qū)間上的單調(diào)性可得出、、的大小關(guān)系.【詳解】,則函數(shù)為偶函數(shù),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在該函數(shù)在區(qū)間上為減函數(shù),,由換底公式得,由函數(shù)的性質(zhì)可得,對(duì)數(shù)函數(shù)在上為增函數(shù),則,指數(shù)函數(shù)為增函數(shù),則,即,,因此,.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性與單調(diào)性比較函數(shù)值的大小關(guān)系,同時(shí)也考查了利用中間值法比較指數(shù)式和代數(shù)式的大小關(guān)系,涉及指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.2、C【解析】

由題意,利用等差數(shù)列前n項(xiàng)和公式求出a1=﹣6d,由此能求出S13的值.【詳解】∵等差數(shù)列{an}的前n項(xiàng)和為Sn,S9=S4,∴4a1,解得a1=﹣6d,∴S1378d﹣78d=1.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和公式的應(yīng)用,考查運(yùn)算求解能力,是基礎(chǔ)題.3、B【解析】

設(shè)等差數(shù)列公差為,可得,再利用基本不等式求最值,從而求出答案.【詳解】設(shè)等差數(shù)列公差為,則,從而,此時(shí),故,所以,即,當(dāng)且僅當(dāng),即時(shí)取“=”,又,解得,所以,所以,故選:B.【點(diǎn)睛】本題主要考查數(shù)列和不等式的綜合運(yùn)用,需要學(xué)生對(duì)所學(xué)知識(shí)融會(huì)貫通,靈活運(yùn)用.4、D【解析】

由已知利用基本不等式求得的最大值,根據(jù)三角形的面積公式,即可求解,得到答案.【詳解】由題意,利用基本不等式可得,即,解得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又因?yàn)?,所以,?dāng)且僅當(dāng)時(shí)等號(hào)成立,故三角形的面積的最大值為,故選D.【點(diǎn)睛】本題主要考查了基本不等式的應(yīng)用,以及三角形的面積公式的應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與運(yùn)算能力,屬于基礎(chǔ)題.5、B【解析】

根據(jù)題意結(jié)合正弦定理,由題,可得三角形為等邊三角形,即可得解.【詳解】由題:即,中,由正弦定理可得:,即,兩邊同時(shí)平方:,由題,所以,即,所以,即為等邊三角形,所以.故選:B【點(diǎn)睛】此題考查利用正弦定理進(jìn)行邊角互化,根據(jù)邊的關(guān)系判斷三角形的形狀,求出三角形的內(nèi)角.6、A【解析】根據(jù)已知的三視圖想象出空間幾何體,然后由幾何體的組成和有關(guān)幾何體體積公式進(jìn)行計(jì)算.由幾何體的三視圖可知幾何體為一個(gè)組合體,即一個(gè)正方體中間去掉一個(gè)圓錐體,所以它的體積是.7、C【解析】

根據(jù)等比數(shù)列前項(xiàng)和為帶入即可。【詳解】當(dāng)時(shí),不成立。當(dāng)時(shí),則,選擇C【點(diǎn)睛】本題主要考查了等比數(shù)列的前項(xiàng)和,,屬于基礎(chǔ)題。8、B【解析】,所以,整理得求得或若,則三角形為等腰三角形,不滿足內(nèi)角和定理,排除.【考點(diǎn)定位】本題考查正弦定理和余弦定理的應(yīng)用,考查運(yùn)算能力和分類討論思想.當(dāng)求出后,要及時(shí)判斷出,便于三角形的初步定型,也為排除提供了依據(jù).如果選擇支中同時(shí)給出了或,會(huì)增大出錯(cuò)率.9、B【解析】

如圖,設(shè)拋物線方程為,交軸于點(diǎn),則,即點(diǎn)縱坐標(biāo)為,則點(diǎn)橫坐標(biāo)為,即,由勾股定理知,,即,解得,即的焦點(diǎn)到準(zhǔn)線的距離為4,故選B.【點(diǎn)睛】10、A【解析】

由題意利用直線的傾斜角和斜率求出tanα的值,再利用三角恒等變換,求出要求式子的值.【詳解】直線3x-y+1=0的傾斜角為α,∴tanα=3,

∴,

故選A.【點(diǎn)睛】本題主要考查直線的傾斜角和斜率,三角恒等變換,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】因?yàn)閳A心坐標(biāo)與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應(yīng)填答案.12、80【解析】

由題意,求得甲乙丙三所學(xué)校抽樣比為,再根據(jù)甲學(xué)校中抽取了40名學(xué)生的數(shù)學(xué)成績(jī),即可求解丙學(xué)校應(yīng)抽取的人數(shù),得到答案.【詳解】由題意知,甲乙丙三所學(xué)校參加聯(lián)考的人數(shù)分別為200、300、400,所以甲乙丙三所學(xué)校抽樣比為,又由甲學(xué)校中抽取了40名學(xué)生的數(shù)學(xué)成績(jī),所以在丙學(xué)校應(yīng)抽取人.【點(diǎn)睛】本題主要考查了分層抽樣概念及其應(yīng)用,其中解答中熟記分層抽樣的概念,以及計(jì)算的方法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、【解析】

由二倍角的余弦函數(shù)公式化簡(jiǎn)解析式可得,根據(jù)三角函數(shù)的周期性及其求法即可得解.【詳解】.由周期公式可得:.故答案為【點(diǎn)睛】本題主要考查了二倍角的余弦函數(shù)公式的應(yīng)用,考查了三角函數(shù)的周期性及其求法,屬于基本知識(shí)的考查.14、【解析】

首先利用輔助角公式,半角公式,誘導(dǎo)公式分別求出,,的值,然后結(jié)合正弦函數(shù)的單調(diào)性對(duì),,排序即可.【詳解】由題知,,,因?yàn)檎液瘮?shù)在上單調(diào)遞增,所以.故答案為:.【點(diǎn)睛】本題考查了輔助角公式,半角公式,誘導(dǎo)公式,正弦函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.15、(或)【解析】

先設(shè),根據(jù)題意得到,再由兩角和的正切公式求出,得到,進(jìn)而可得出結(jié)果.【詳解】設(shè),則所以,所以,因此.故答案為【點(diǎn)睛】本題主要考查三角恒等變換的應(yīng)用,熟記公式即可,屬于常考題型.16、4【解析】

直接利用分層抽樣的比例關(guān)系得到答案.【詳解】青年職工與老年職工的人數(shù)比為,中年職工有24人,故老年職工為,故應(yīng)抽取老年職工的人數(shù)為.故答案為:.【點(diǎn)睛】本題考查了分層抽樣的相關(guān)計(jì)算,意在考查學(xué)生的計(jì)算能力.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1);(2);(3),,【解析】

(1)利用基本元的思想,將已知轉(zhuǎn)化為的形式列方程組,解方程組求得的值,從而求得數(shù)列的通項(xiàng)公式.(2)利用裂項(xiàng)求和法求得表達(dá)式,判斷出,利用對(duì)數(shù)函數(shù)的性質(zhì)得到,由此得到.(3)首先求得,當(dāng)時(shí),根據(jù)的表達(dá)式,求得的表達(dá)式.利用分組求和法求得當(dāng)時(shí)的表達(dá)式,并根據(jù)的值求得的分段表達(dá)式.【詳解】(1)為等差數(shù)列,,得,∴(2)∵,∴,又,∴.(3)由分段函數(shù),可以得到:,,當(dāng)時(shí),,故當(dāng)時(shí),,又符合上式所以.【點(diǎn)睛】本小題主要考查等差數(shù)列基本量的計(jì)算,考查裂項(xiàng)求和法、分組求和法,考查運(yùn)算求解能力,屬于中檔題.18、(1)見解析;(2).【解析】

(1)連接,證明平面,進(jìn)而可得出;(2)連接、、,設(shè),過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),連接,設(shè),則角和均為直線與平面所成的角,從而可得出,即可求出所求角.【詳解】(1)如下圖所示,連接,在正方體中,平面,平面,,四邊形為正方形,,,平面,平面,;(2)連接、、,設(shè),過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),設(shè),設(shè)正方體的棱長(zhǎng)為,在正方體中,且,所以,四邊形為平行四邊形,,平面,平面,在平面內(nèi),,,,,則、、、四點(diǎn)共面,為的中點(diǎn),,且,平面,平面,,由勾股定理得,連接,設(shè),則直線與面所成角為,則,,由連比定理得,則,因此,直線與面所成角為.【點(diǎn)睛】本題考查線線垂直的證明,考查線面角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.19、(1)見解析;(2)【解析】

(1)由題設(shè)AB=AC=SB=SC=SA,連結(jié)OA,推導(dǎo)出SO⊥BC,SO⊥AO,由此能證明SO⊥平面ABC;(2)設(shè)點(diǎn)B到平面SAC的距離為h,由VS﹣BAC=VB﹣SAC,能求出點(diǎn)B到平面SAC的距離.【詳解】(1)由題設(shè),連結(jié),為等腰直角三角形,所以,且,又為等腰三角形,故,且,從而.所以為直角三角形,.又.所以平面,故AC⊥SO.(2)設(shè)B到平面SAC的距離為,則由(Ⅰ)知:三棱錐即∵為等腰直角三角形,且腰長(zhǎng)為2.∴∴∴△SAC的面積為=△ABC面積為,∴,∴B到平面SAC的距離為【點(diǎn)睛】本題考查線面垂直的證明,考查點(diǎn)到平面距離的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、空間想象能力、運(yùn)算求解能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想,是中檔題.20、(1)弦長(zhǎng)為4;(1)0【解析】

(1)由得到直線過圓的圓心,可求得弦長(zhǎng)即為圓的直徑4;(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論