版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省南昌市東湖區(qū)南昌十中2023-2024學年數(shù)學高一下期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最大值為()A.1 B.2 C.3 D.52.若,則等于()A. B. C. D.3.計算的值為()A. B. C. D.4.已知,∥則()A.6 B. C.-6 D.5.用斜二測畫法畫一個水平放置的平面圖形的直觀圖是如圖所示的一個正方形,則原來的圖形是().A. B.C. D.6.以下說法正確的是()A.零向量與單位向量的模相等B.模相等的向量是相等向量C.已知均為單位向量,若,則與的夾角為D.向量與向量是共線向量,則四點在一條直線上7.設等比數(shù)列的前項和為,且,則()A. B. C. D.8.在一段時間內,某種商品的價格(元)和銷售量(件)之間的一組數(shù)據(jù)如下表:價格(元)4681012銷售量(件)358910若與呈線性相關關系,且解得回歸直線的斜率,則的值為()A.0.2 B.-0.7 C.-0.2 D.0.79.將正整數(shù)排列如下:123456789101112131415……則圖中數(shù)出現(xiàn)在()A.第行列 B.第行列 C.第行列 D.第行列10.已知,則=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的單調增區(qū)間是________.12.___________.13.給出下列五個命題:①函數(shù)的一條對稱軸是;②函數(shù)的圖象關于點(,0)對稱;③正弦函數(shù)在第一象限為增函數(shù);④若,則,其中;⑤函數(shù)的圖像與直線有且僅有兩個不同的交點,則的取值范圍為.以上五個命題中正確的有(填寫所有正確命題的序號)14.現(xiàn)用一半徑為,面積為的扇形鐵皮制作一個無蓋的圓錐形容器(假定銜接部分及鐵皮厚度忽略不計,且無損耗),則該容器的容積為__________.15.己知中,角所対的辻分別是.若,=,,則=______.16.若實數(shù)滿足,則取值范圍是____________。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,且為第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.18.已知圓過點,且與圓關于直線:對稱.(1)求圓的標準方程;(2)設為圓上的一個動點,求的最小值.19.在中,角所對的邊分別為,已知,.(1)求的值;(2)若,求周長的取值范圍.20.近日,某地普降暴雨,當?shù)匾淮笮吞釅伟l(fā)生了滲水現(xiàn)象,當發(fā)現(xiàn)時已有的壩面滲水,經(jīng)測算,壩而每平方米發(fā)生滲水現(xiàn)象的直接經(jīng)濟損失約為元,且滲水面積以每天的速度擴散.當?shù)赜嘘P部門在發(fā)現(xiàn)的同時立即組織人員搶修滲水壩面,假定每位搶修人員平均每天可搶修滲水面積,該部門需支出服裝補貼費為每人元,勞務費及耗材費為每人每天元.若安排名人員參與搶修,需要天完成搶修工作.寫出關于的函數(shù)關系式;應安排多少名人員參與搶修,才能使總損失最小.(總損失=因滲水造成的直接損失+部門的各項支出費用)21.已知時不等式恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由可求得所處的范圍,進而得到函數(shù)最大值.【詳解】的最大值為故選:【點睛】本題考查函數(shù)最值的求解,關鍵是明確余弦型函數(shù)的值域,屬于基礎題.2、B【解析】試題分析:,.考點:三角恒等變形、誘導公式、二倍角公式、同角三角函數(shù)關系.3、D【解析】
直接由二倍角的余弦公式,即可得解.【詳解】由二倍角公式得:,故選D.【點睛】本題考查了二倍角的余弦公式,屬于基礎題.4、A【解析】
根據(jù)向量平行(共線),它們的坐標滿足的關系式,求出的值.【詳解】,且,,解得,故選A.【點睛】利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.5、A【解析】試題分析:由斜二測畫法的規(guī)則知與x'軸平行或重合的線段與x’軸平行或重合,其長度不變,與y軸平行或重合的線段與x’軸平行或重合,其長度變成原來的一半,正方形的對角線在y'軸上,可求得其長度為,故在平面圖中其在y軸上,且其長度變?yōu)樵瓉淼?倍,長度為2,觀察四個選項,A選項符合題意.故應選A.考點:斜二測畫法.點評:注意斜二測畫法中線段長度的變化.6、C【解析】
根據(jù)零向量、單位向量、相等向量,向量的模、向量共線、向量數(shù)量積的運算的知識分析選項,由此確定正確選項.【詳解】對于A選項,零向量的模是,單位向量的模是,兩者不相等,故A選項說法錯誤.對于B選項,兩個向量大小和方向都相等才是相等向量,故B選項說法錯誤.對于C選項,由,故C選項說法正確.對于D選項,向量與向量是共線向量,但是這兩個向量沒有公共點,所以無法判斷是否在一條直線上.故D選項說法錯誤.故選:C【點睛】本小題主要考查向量的有關概念,考查向量數(shù)量積的運算,屬于基礎題.7、C【解析】
由,,聯(lián)立方程組,求出等比數(shù)列的首項和公比,然后求.【詳解】解:若,則,顯然不成立,所以.由,,得,,所以,所以公比.所以.或者利用,所以.故選:C.【點睛】本題主要考查等比數(shù)列的前項和公式的應用,要求熟練掌握,特別要注意對公比是否等于1要進行討論,屬于基礎題.8、C【解析】
由題意利用線性回歸方程的性質計算可得的值.【詳解】由于,,由于線性回歸方程過樣本中心點,故:,據(jù)此可得:.故選C.【點睛】本題主要考查線性回歸方程的性質及其應用,屬于中等題.9、B【解析】
計算每行首個數(shù)字的通項公式,再判斷出現(xiàn)在第幾列,得到答案.【詳解】每行的首個數(shù)字為:1,2,4,7,11…利用累加法:計算知:數(shù)出現(xiàn)在第行列故答案選B【點睛】本題考查了數(shù)列的應用,計算首數(shù)字的通項公式是解題的關鍵.10、C【解析】由得:,所以,故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、,【解析】
先利用誘導公式化簡,即可由正弦函數(shù)的單調性求出。【詳解】因為,所以的單調增區(qū)間是,。【點睛】本題主要考查誘導公式以及正弦函數(shù)的性質——單調性的應用。12、【解析】
先將寫成的形式,再根據(jù)誘導公式進行求解.【詳解】由題意得:.故答案為:.【點睛】考查三角函數(shù)的誘導公式.,,,,.13、①②⑤【解析】試題分析:①將代入可得函數(shù)最大值,為函數(shù)對稱軸;②函數(shù)的圖象關于點對稱,包括點;③,③錯誤;④利用誘導公式,可得不同于的表達式;⑤對進行討論,利用正弦函數(shù)圖象,得出函數(shù)與直線僅有有兩個不同的交點,則.故本題答案應填①②⑤.考點:三角函數(shù)的性質.【知識點睛】本題主要考查三角函數(shù)的圖象性質.對于和的最小正周期為.若為偶函數(shù),則當時函數(shù)取得最值,若為奇函數(shù),則當時,.若要求的對稱軸,只要令,求.若要求的對稱中心的橫坐標,只要令即可.14、【解析】分析:由圓錐的幾何特征,現(xiàn)用一半徑為,面積為的扇形鐵皮制作一個無蓋的圓錐形容器,則圓錐的底面周長等于扇形的弧長,圓錐的母線長等于扇形的半徑,由此計算出圓錐的高,代入圓錐體積公式,即可求出答案.解析:設鐵皮扇形的半徑和弧長分別為R、l,圓錐形容器的高和底面半徑分別為h、r,則由題意得R=10,由,得,由得.由可得.該容器的容積為.故答案為.點睛:涉及弧長和扇形面積的計算時,可用的公式有角度表示和弧度表示兩種,其中弧度表示的公式結構簡單,易記好用,在使用前,應將圓心角用弧度表示.15、1【解析】
應用余弦定理得出,再結合已知等式配出即可.【詳解】∵,即,∴,①又由余弦定理得,②,②-①得,∴,∴.故答案為1.【點睛】本題考查余弦定理,掌握余弦定理是解題關鍵,解題時不需要求出的值,而是用整體配湊的方法得出配湊出,這樣可減少計算.16、;【解析】
利用三角換元,設,;利用輔助角公式將化為,根據(jù)三角函數(shù)值域求得結果.【詳解】可設,,本題正確結果:【點睛】本題考查利用三角換元法求解取值范圍的問題,關鍵是能夠將問題轉化為三角函數(shù)值域的求解問題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由已知利用同角三角函數(shù)基本關系式可求,利用誘導公式,二倍角公式即可計算得解;(Ⅱ)由已知利用二倍角的余弦函數(shù)公式可求cos2α的值,根據(jù)同角三角函數(shù)基本關系式可求tan2α的值,根據(jù)兩角和的正切函數(shù)公式即可計算得解.【詳解】(Ⅰ)由已知,得,∴.(Ⅱ)∵,得,∴.【點睛】本題主要考查了同角三角函數(shù)基本關系式,誘導公式,二倍角公式,兩角和的正切函數(shù)公式在三角函數(shù)化簡求值中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.18、(1);(2).【解析】
試題分析:(1)兩個圓關于直線對稱,那么就是半徑相等,圓心關于直線對稱,利用斜率相乘等于和中點在直線上建立方程,解方程組求出圓心坐標,同時求得圓的半徑,由此求得圓的標準方程;(2)設,則,代入化簡得,利用三角換元,設,所以.試題解析:(1)設圓心,則,解得,則圓的方程為,將點的坐標代入得,故圓的方程為.(2)設,則,且,令,∴,故的最小值為-1.考點:直線與圓的位置關系,向量.19、(1)3;(2).【解析】
(1)先用二倍角公式化簡,再根據(jù)正弦定理即可解出;(2)用正弦定理分別表示,再用三角形內角和及和差公式化簡,轉化為三角函數(shù)求最值.【詳解】(1)由及二倍角公式得,又即,所以;(2)由正弦定理得,周長:,又因為,所以.因此周長的取值范圍是.【點睛】本題考查了正余弦定理解三角形,三角形求邊長取值范圍常用的方法:1、轉化為三角函數(shù)求最值;2、基本不等式.20、(1)(2)應安排名民工參與搶修,才能使總損失最小【解析】
(1)由題意得要搶修完成必須使得搶修的面積等于滲水的面積,即可得,所以;(2)損失包=滲水直接經(jīng)濟損失+搶修服裝補貼費+勞務費耗材費,即可得到函數(shù)解析式,再利用基本不等式,即可得到結果.【詳解】由題意,可得,所以.設總損失為元,則當且僅當,即時,等號成立,所以應安排名民工參
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 ISO/IEC 23092-1:2025 EN Information technology - Genomic information representation - Part 1: Transport and storage of genomic information
- 二零二五版果樹病蟲害防治與種植承包合同3篇
- 影視項目2025年度演員選角服務合同2篇
- 二零二五版餐飲業(yè)與旅行社跨界融合合同3篇
- 二零二五版電力設施拆除與再利用合同模板3篇
- 安徽省二零二五年度事業(yè)單位圖書館管理員聘用合同3篇
- 二零二五版集體房屋買賣合同及社區(qū)文化活動服務協(xié)議3篇
- 二零二五年度高端酒水品牌對外承包經(jīng)營合同范本3篇
- 二零二五年度高速公路收費員勞動合同解除與補償標準合同3篇
- 二零二五版果園租賃與農(nóng)業(yè)循環(huán)經(jīng)濟合同2篇
- 給男友的道歉信10000字(十二篇)
- 2020年高級統(tǒng)計實務與案例分析真題及答案
- 全面質量管理(TQM)基本知識
- 練字本方格模板
- 產(chǎn)品供貨質量保障措施
- 電力電纜高頻局放試驗報告
- 《老山界》第1第2課時示范公開課教學PPT課件【統(tǒng)編人教版七年級語文下冊】
- JJG 517-2016出租汽車計價器
- JJF 1914-2021金相顯微鏡校準規(guī)范
- GB/T 32045-2015節(jié)能量測量和驗證實施指南
- GB/T 10001.6-2021公共信息圖形符號第6部分:醫(yī)療保健符號
評論
0/150
提交評論