梅州市重點中學2025屆高一下數(shù)學期末考試模擬試題含解析_第1頁
梅州市重點中學2025屆高一下數(shù)學期末考試模擬試題含解析_第2頁
梅州市重點中學2025屆高一下數(shù)學期末考試模擬試題含解析_第3頁
梅州市重點中學2025屆高一下數(shù)學期末考試模擬試題含解析_第4頁
梅州市重點中學2025屆高一下數(shù)學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

梅州市重點中學2025屆高一下數(shù)學期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知m,n表示兩條不同直線,表示平面,下列說法正確的是()A.若則 B.若,,則C.若,,則 D.若,,則2.在中,,,角的平分線,則長為()A. B. C. D.3.已知等差數(shù)列的公差為2,且是與的等比中項,則等于()A. B. C. D.4.在等比數(shù)列{an}中,若a2,a9是方程x2﹣2x﹣6=0的兩根,則a4?a7的值為()A.6 B.1 C.﹣1 D.﹣65.中國數(shù)學家劉微在《九章算術注》中提出“割圓”之說:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣.”意思是“圓內接正多邊形的邊數(shù)無限增加的時候,它的周長的極限是圓的周長,它的面積的極限是圓的面積”.如圖,若在圓內任取一點,則此點取自其內接正六邊形的邊界及其內部的概率為()A. B. C. D.6.某社區(qū)義工隊有24名成員,他們年齡的莖葉圖如下表所示,先將他們按年齡從小到大編號為1至24號,再用系統(tǒng)抽樣方法抽出6人組成一個工作小組,則這個小組年齡不超過55歲的人數(shù)為()3940112551366778889600123345A.1 B.2 C.3 D.47.為了解某地區(qū)的中小學生視力情況,擬從該地區(qū)的中小學生中抽取部分學生進行調查,事先已了解到該地區(qū)小學、初中、高中三個學段學生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是()A.簡單隨機抽樣 B.按性別分層抽樣C.按學段分層抽樣 D.系統(tǒng)抽樣8.已知且為常數(shù),圓,過圓內一點的直線與圓相交于兩點,當弦最短時,直線的方程為,則的值為()A.2 B.3 C.4 D.59.若且,則()A. B. C. D.10.設,則比多了()項A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若6是-2和k的等比中項,則______.12.設數(shù)列()是等差數(shù)列,若和是方程的兩根,則數(shù)列的前2019項的和________13.函數(shù)f(x)=coscos的最小正周期為________.14.在中,角、、所對應邊分別為、、,,的平分線交于點,且,則的最小值為______15.已知數(shù)列是等差數(shù)列,若,,則________.16.不等式的解集為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某地統(tǒng)計局調查了10000名居民的月收入,并根據所得數(shù)據繪制了樣本的頻率分布直方圖如圖所示.(1)求居民月收入在[3000,3500)內的頻率;(2)根據頻率分布直方圖求出樣本數(shù)據的中位數(shù);(3)為了分析居民的月收入與年齡、職業(yè)等方面的關系,必須按月收入再從這10000中用分層抽樣的方法抽出100人做進一步分析,則應從月收入在[2500,3000)內的居民中抽取多少人?18.如圖所示,在直三棱柱中,,,M、N分別為、的中點.求證:平面;求證:平面.19.平面內給定三個向量=(3,2),=(-1,2),=(4,1).(1)求滿足的實數(shù)m,n;(2)若,求實數(shù)k;20.已知向量,(1)若,求;(2)若,求.21.已知,,,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:線面垂直,則有該直線和平面內所有的直線都垂直,故B正確.考點:空間點線面位置關系.2、B【解析】

在中利用正弦定理可求,從而可求,再根據內角和為可得,從而得到為等腰三角形,故可求的長.【詳解】在中,由正弦定理有即,所以,因為,故,故,所以,故,為等腰三角形,故.故選B.【點睛】在解三角形中,我們有時需要找出不同三角形之間相關聯(lián)的邊或角,由它們溝通分散在不同三角形的幾何量.3、A【解析】

直接利用等差數(shù)列公式和等比中項公式得到答案.【詳解】是與的等比中項,故即解得:故選:A【點睛】本題考查了等差數(shù)列和等比中項,屬于??碱}型.4、D【解析】

由題意利用韋達定理,等比數(shù)列的性質,求得a4?a7的值.【詳解】∵等比數(shù)列{an}中,若a2,a9是方程x2﹣2x﹣6=0的兩根,∴a2?a9=﹣6,則a4?a7=a2?a9=﹣6,故選:D.【點睛】本題主要考查等比數(shù)列的性質及二次方程中韋達定理的應用,考查了分析問題的能力,屬于基礎題.5、C【解析】

設出圓的半徑,表示出圓的面積和圓內接正六邊形的面積,即可由幾何概型概率計算公式得解.【詳解】設圓的半徑為則圓的面積為圓內接正六邊形的面積為由幾何概型概率可知,在圓內任取一點,則此點取自其內接正六邊形的邊界及其內部的概率為故選:C【點睛】本題考查了圓的面積及圓內接正六邊形的面積求法,幾何概型概率的計算公式,屬于基礎題.6、B【解析】

求出樣本間隔,結合莖葉圖求出年齡不超過55歲的有8人,然后進行計算即可.【詳解】解:樣本間隔為,年齡不超過55歲的有8人,則這個小組中年齡不超過55歲的人數(shù)為人.故選:.【點睛】本題主要考查莖葉圖以及系統(tǒng)抽樣的應用,求出樣本間隔是解決本題的關鍵,屬于基礎題.7、C【解析】試題分析:符合分層抽樣法的定義,故選C.考點:分層抽樣.8、B【解析】

由圓的方程求出圓心坐標與半徑,結合題意,可得過圓心與點(1,2)的直線與直線2x﹣y=0垂直,再由斜率的關系列式求解.【詳解】圓C:化簡為圓心坐標為,半徑為.如圖,由題意可得,當弦最短時,過圓心與點(1,2)的直線與直線垂直.則,即a=1.故選:B.【點睛】本題考查直線與圓位置關系的應用,考查數(shù)形結合的解題思想方法與數(shù)學轉化思想方法,是中檔題.一般直線和圓的題很多情況下是利用數(shù)形結合來解決的,聯(lián)立的時候較少;在求圓上的點到直線或者定點的距離時,一般是轉化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值;涉及到圓的弦長或者切線長時,經常用到垂徑定理.9、A【解析】

利用同角的三角函數(shù)關系求得,再根據正弦的二倍角公式求解即可【詳解】由題,因為,,所以或,因為,所以,則,所以,故選:A【點睛】本題考查正弦的二倍角公式的應用,考查同角的三角函數(shù)關系的應用,考查已知三角函數(shù)值求三角函數(shù)值問題10、C【解析】

可知中共有項,然后將中的項數(shù)減去中的項數(shù)即可得出答案.【詳解】,則中共有項,所以,比多了的項數(shù)為.故選:C.【點睛】本題考查數(shù)學歸納法的應用,解題的關鍵就是計算出等式中的項數(shù),考查分析問題和解決問題的能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、-18【解析】

根據等比中項的性質,列出等式可求得結果.【詳解】由等比中項的性質可得,,得.故答案為:-18【點睛】本題主要考查等比中項的性質,屬于基礎題.12、2019【解析】

根據二次方程根與系數(shù)的關系得出,再利用等差數(shù)列下標和的性質得到,然后利用等差數(shù)列求和公式可得出答案.【詳解】由二次方程根與系數(shù)的關系可得,由等差數(shù)列的性質得出,因此,等差數(shù)列的前項的和為,故答案為.【點睛】本題考查等差數(shù)列的性質與等差數(shù)列求和公式的應用,涉及二次方程根與系數(shù)的關系,解題的關鍵在于等差數(shù)列性質的應用,屬于中等題.13、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期為T==214、18【解析】

根據三角形面積公式找到的關系,結合基本不等式即可求得最小值.【詳解】根據題意,,因為的平分線交于點,且,所以而所以,化簡得則當且僅當,即,時取等號,即最小值為.故答案為:【點睛】本題考查三角形面積公式和基本不等式,考查計算能力,屬于中等題型15、【解析】

求出公差,利用通項公式即可求解.【詳解】設公差為,則所以故答案為:【點睛】本題主要考查了等差數(shù)列基本量的計算,屬于基礎題.16、【解析】

將三階矩陣化為普通運算,利用指數(shù)函數(shù)的性質即可求出不等式的解集.【詳解】不等式化為,整理得,,,即,,即不等式的解集為故答案為:【點睛】此題考查了其他不等式的解法,指數(shù)函數(shù)的性質,以及三階矩陣,是一道中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)0.15(2)2400(3)25人【解析】

(1)由頻率分布直方圖計算可得月收入在[3000,3500)內的頻率;(2)分別計算小長方形的面積值,利用中位數(shù)的特點即可確定中位數(shù)的值;(3)首先確定10000人中月收入在[2500,3000]內的人數(shù),然后結合分層抽樣的特點可得應抽取的人數(shù).【詳解】(1)居民月收入在[3000,3500]內的頻率為(2)因為,,,,所以樣本數(shù)據的中位數(shù)為.(3)居民月收入在[2500,3000]內的頻率為,所以這10000人中月收入在[2500,3000]內的人數(shù)為.從這10000人中用分層抽樣的方法抽出100人,則應從月收入在[2500,3000]內的居民中抽取(人).【點睛】利用頻率分布直方圖求眾數(shù)、中位數(shù)和平均數(shù)時,應注意三點:①最高的小長方形底邊中點的橫坐標即是眾數(shù);②中位數(shù)左邊和右邊的小長方形的面積和是相等的;③平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個小長方形的面積乘以小長方形底邊中點的橫坐標之和.18、(1)見解析;(2)見解析.【解析】

(1)推導出,從而平面,進而,再由,,得是正方形,由此能證明平面.取的中點F,連BF、推導出四邊形BMNF是平行四邊形,從而,由此能證明平面.【詳解】證明:在直三棱柱中,側面底面ABC,且側面底面,,即,平面,平面,,,是正方形,,平面取的中點F,連BF、在中,N、F是中點,,,又,,,,故四邊形BMNF是平行四邊形,,而面,平面,平面【點睛】本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.19、(1);(2).【解析】

(1)由及已知得,由此列方程組能求出實數(shù);(2)由,可得,由此能求出的值.【詳解】(1)由題意得(3,2)=m(-1,2)+n(4,1),所以,解得;(2)∵a+kc=(3+4k,2+k),2b-a=(-5,2),∴2×(3+4k)-(-5)×(2+k)=0.∴k=.【點睛】本題主要考查相等向量與共線向量的性質,屬于簡單題.利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.20、(1)3;(2)或【解析】

(1)由,得,又由,即可得到本題答案;(2)由,得,即,由此即可得到本題答案.【詳解】解:(1)由,得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論