版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省紅河州瀘西一中2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,且,則實(shí)數(shù)的值為()A.2 B. C.3 D.2.如圖所示,某汽車品牌的標(biāo)志可看作由兩個(gè)同心圓構(gòu)成,其中大、小圓的半徑之比為,小圓內(nèi)部被兩條互相垂直的直徑分割成四塊.在整個(gè)圖形中任選一點(diǎn),則該點(diǎn)選自白色部分的概率為()A. B. C. D.3.已知向量,.且,則()A.2 B. C. D.4.已知變量與正相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù),,則由該觀測的數(shù)據(jù)算得的線性回歸方程可能是()A. B.C. D.5.若將函數(shù)的圖象向右平移個(gè)單位后,所得圖象對(duì)應(yīng)的函數(shù)為()A. B. C. D.6.某中學(xué)高一年級(jí)甲班有7名學(xué)生,乙班有8名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績的中位數(shù)是82,若從成績?cè)诘膶W(xué)生中隨機(jī)抽取兩名學(xué)生,則兩名學(xué)生的成績都高于82分的概率為()A. B. C. D.7.將一個(gè)底面半徑和高都是的圓柱挖去一個(gè)以上底面為底面,下底面圓心為頂點(diǎn)的圓錐后,剩余部分的體積記為,半徑為的半球的體積記為,則與的大小關(guān)系為()A. B. C. D.不能確定8.設(shè)集合,,若,則的取值范圍是()A. B. C. D.9.如果數(shù)據(jù)的平均數(shù)為,方差為,則的平均數(shù)和方差分別為()A. B. C. D.10.已知函數(shù),若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.圓上的點(diǎn)到直線4x+3y-12=0的距離的最小值是12.在中,,,則角_____.13.在三棱錐P-ABC中,平面PAB⊥平面ABC,ΔABC是邊長為23的等邊三角形,其中PA=PB=14.在數(shù)列中,,則___________.15.向量滿足,,則向量的夾角的余弦值為_____.16.己知中,角所対的辻分別是.若,=,,則=______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asinA=(2b-c)sinB+(2c-b)sinC..(1)求角A的大小;(2)若sinB+sinC=3,試判斷△ABC的形狀.18.如圖,在直三棱柱中,,,是棱的中點(diǎn).(1)求證:;(2)求證:.19.設(shè)二次函數(shù).(1)若對(duì)任意實(shí)數(shù),恒成立,求實(shí)數(shù)x的取值范圍;(2)若存在,使得成立,求實(shí)數(shù)m的取值范圍.20.如圖,四棱錐中,是正三角形,四邊形ABCD是矩形,且平面平面.(1)若點(diǎn)E是PC的中點(diǎn),求證:平面BDE;(2)若點(diǎn)F在線段PA上,且,當(dāng)三棱錐的體積為時(shí),求實(shí)數(shù)的值.21.如圖,是正方形,是該正方形的中心,是平面外一點(diǎn),底面,是的中點(diǎn).求證:(1)平面;(2)平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
根據(jù)二角和與差的正弦公式化簡,,再切化弦,即可求解.【詳解】由題意又解得故選:【點(diǎn)睛】本題考查兩角和與差的正弦公式,屬于基礎(chǔ)題.2、B【解析】
設(shè)大圓半徑為,小圓半徑為,求出白色部分面積和大圓面積,由幾何概型概率公式可得.【詳解】設(shè)大圓半徑為,小圓半徑為,則整個(gè)圖形的面積為,白色部分的面積為,所以所求概率.故選:B.【點(diǎn)睛】本題考查幾何概型,考查面積型的幾何概型,屬于基礎(chǔ)題.3、B【解析】
通過得到,再利用和差公式得到答案.【詳解】向量,.且故答案為B【點(diǎn)睛】本題考查了向量平行,正切值的計(jì)算,意在考查學(xué)生的計(jì)算能力.4、A【解析】試題分析:因?yàn)榕c正相關(guān),排除選項(xiàng)C、D,又因?yàn)榫€性回歸方程恒過樣本點(diǎn)的中心,故排除選項(xiàng)B;故選A.考點(diǎn):線性回歸直線.5、B【解析】
根據(jù)正弦型函數(shù)的圖象平移規(guī)律計(jì)算即可.【詳解】.故選:B.【點(diǎn)睛】本題考查三角函數(shù)圖象的平移變化,考查對(duì)基本知識(shí)的理解和掌握,屬于基礎(chǔ)題.6、D【解析】
計(jì)算得到,,再計(jì)算概率得到答案.【詳解】,解得;,解得;故.故選:.【點(diǎn)睛】本題考查了平均值,中位數(shù),概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.7、C【解析】
根據(jù)題意分別表示出,通過比較。【詳解】所以,選C。【點(diǎn)睛】,,。記住這幾個(gè)公式即可,屬于基礎(chǔ)題目。8、A【解析】因?yàn)?,,且,即,所?故選A.9、D【解析】
根據(jù)平均數(shù)和方差的公式,可推導(dǎo)出,,,的平均數(shù)和方差.【詳解】因?yàn)?,所以,所以的平均?shù)為;因?yàn)椋?,故選:D.【點(diǎn)睛】本題考查平均數(shù)與方差的公式計(jì)算,考查對(duì)概念的理解與應(yīng)用,考查基本運(yùn)算求解能力.10、D【解析】
令,根據(jù)奇偶性定義可判斷出為奇函數(shù),從而可求得,進(jìn)而求得結(jié)果.【詳解】令為奇函數(shù)又即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)的奇偶性求解函數(shù)值的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式得到奇函數(shù),利用奇函數(shù)的定義可求得對(duì)應(yīng)位置的函數(shù)值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
計(jì)算出圓心到直線的距離,減去半徑,求得圓上的點(diǎn)到直線的最小距離.【詳解】圓的圓心為,半徑.圓心到直線的距離為,故最小距離為.【點(diǎn)睛】本小題主要考查圓上的點(diǎn)到直線距離最小值的求法,考查點(diǎn)到直線距離公式,屬于基礎(chǔ)題.12、或【解析】
本題首先可以通過解三角形面積公式得出的值,再根據(jù)三角形內(nèi)角的取值范圍得出角的值?!驹斀狻坑山馊切蚊娣e公式可得:即因?yàn)?,所以或【點(diǎn)睛】在解三角形過程中,要注意求出來的角的值可能有多種情況。13、65π【解析】
本題首先可以通過題意畫出圖像,然后通過三棱錐的圖像性質(zhì)以及三棱錐的外接球的相關(guān)性質(zhì)來確定圓心的位置,最后根據(jù)各邊所滿足的幾何關(guān)系列出算式,即可得出結(jié)果?!驹斀狻咳鐖D所示,作AB中點(diǎn)D,連接PD、CD,在CD上作三角形ABC的中心E,過點(diǎn)E作平面ABC的垂線,在垂線上取一點(diǎn)O,使得PO=OC。因?yàn)槿忮F底面是一個(gè)邊長為23的等邊三角形,E所以三棱錐的外接球的球心在過點(diǎn)E的平面ABC的垂線上,因?yàn)镻O=OC,P、C兩點(diǎn)在三棱錐的外接球的球面上,所以O(shè)點(diǎn)即為球心,因?yàn)槠矫鍼AB⊥平面ABC,PA=PB,D為AB中點(diǎn),所以PD⊥平面ABCCD=CA2-ADPD=P設(shè)球的半徑為r,則有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面積為S=4πr【點(diǎn)睛】本題考查三棱錐的相關(guān)性質(zhì),主要考查三棱錐的外接球的相關(guān)性質(zhì),考查如何通過三棱錐的幾何特征來確定三棱錐的外接球與半徑,考查推理能力,考查化歸與轉(zhuǎn)化思想,是難題。14、-1【解析】
首先根據(jù),得到是以,的等差數(shù)列.再計(jì)算其前項(xiàng)和即可求出,的值.【詳解】因?yàn)椋?所以數(shù)列是以,的等差數(shù)列.所以.所以,,.故答案為:【點(diǎn)睛】本題主要考查等差數(shù)列的判斷和等差數(shù)列的前項(xiàng)和的計(jì)算,屬于簡單題.15、【解析】
通過向量的垂直關(guān)系,結(jié)合向量的數(shù)量積求解向量的夾角的余弦值.【詳解】向量,滿足,,可得:,,向量的夾角為,所以.故答案為.【點(diǎn)睛】本題考查向量的數(shù)量積的應(yīng)用,向量的夾角的余弦函數(shù)值的求法.考查計(jì)算能力.屬于基礎(chǔ)題.16、1【解析】
應(yīng)用余弦定理得出,再結(jié)合已知等式配出即可.【詳解】∵,即,∴,①又由余弦定理得,②,②-①得,∴,∴.故答案為1.【點(diǎn)睛】本題考查余弦定理,掌握余弦定理是解題關(guān)鍵,解題時(shí)不需要求出的值,而是用整體配湊的方法得出配湊出,這樣可減少計(jì)算.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)60°【解析】
(1)利用余弦定理表示出cosA,然后根據(jù)正弦定理化簡已知的等式,整理后代入表示出的cosA中,化簡后求出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);(2)由A為60°,利用三角形的內(nèi)角和定理得到B+C的度數(shù),用B表示出C,代入已知的sinB+sinC=3中,利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡,整理后再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),由B的范圍,求出這個(gè)角的范圍,利用特殊角的三角函數(shù)值求出B為60°,可得出三角形ABC三個(gè)角相等,都為60°,則三角形ABC為等邊三角形.【詳解】(1)由2asinA=(2b-c)sinB+(2c-b)sinC,得2a2=(2b-c)b+(2c-b)c,即bc=b2+c2-a2,∴cosA=b2+c(2)∵A+B+C=180°,∴B+C=180°-60°=120°,由sinB+sinC=3,得sinB+sin(120°-B)=3,∴sinB+sin120°cosB-cos120°sinB=3,∴32sinB+32cosB=3,即sin(∵0°<B<120°,∴30°<B+30°<150°,∴B+30°=90°,B=60°,∴A=B=C=60°,△ABC為等邊三角形.【點(diǎn)睛】此題考查了三角形形狀的判斷,正弦、余弦定理,兩角和與差的正弦函數(shù)公式,等邊三角形的判定,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.18、(1)見詳解;(2)見詳解.【解析】
(1)連接AC1,設(shè)AC1∩A1C=O,連接OD,可求O為AC1的中點(diǎn),D是棱AB的中點(diǎn),利用中位線的性質(zhì)可證OD∥BC1,根據(jù)線面平行的判斷定理即可證明BC1∥平面A1CD.(2)由(1)可證平行四邊形ACC1A1是菱形,由其性質(zhì)可得AC1⊥A1C,利用線面垂直的性質(zhì)可證AB⊥AA1,根據(jù)AB⊥AC,利用線面垂直的判定定理可證AB⊥平面ACC1A1,利用線面垂直的性質(zhì)可證AB⊥A1C,又AC1⊥A1C,根據(jù)線面垂直的判定定理可證A1C⊥平面ABC1,利用線面垂直的性質(zhì)即可證明BC1⊥A1C.【詳解】(1)連接AC1,設(shè)AC1∩A1C=O,連接OD,在直三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1是平行四邊形,所以:O為AC1的中點(diǎn),又因?yàn)椋篋是棱AB的中點(diǎn),所以:OD∥BC1,又因?yàn)椋築C1?平面A1CD,OD?平面A1CD,所以:BC1∥平面A1CD.(2)由(1)可知:側(cè)面ACC1A1是平行四邊形,因?yàn)椋篈C=AA1,所以:平行四邊形ACC1A1是菱形,所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因?yàn)椋篈B?平面ABC,所以:AB⊥AA1,又因?yàn)椋篈B⊥AC,AC∩AA1=A,AC?平面ACC1A1,AA1?平面ACC1A1,所以:AB⊥平面ACC1A1,因?yàn)椋篈1C?平面ACC1A1,所以:AB⊥A1C,又因?yàn)椋篈C1⊥A1C,AB∩AC1=A,AB?平面ABC1,AC1?平面ABC1,所以:A1C⊥平面ABC1,因?yàn)椋築C1?平面ABC1,所以:BC1⊥A1C.【點(diǎn)睛】本題主要考查了線面平行的判定,線面垂直的性質(zhì),線面垂直的判定,考查了空間想象能力和推理論證能力,屬于中檔題.19、(1)(2)【解析】
(1)是關(guān)于m的一次函數(shù),計(jì)算得到答案.(2)易知,討論和兩種情況計(jì)算得到答案.【詳解】(1)對(duì)任意實(shí)數(shù),恒成立,即對(duì)任意實(shí)數(shù)恒成立,是關(guān)于m的一次函數(shù),,解得或,所以實(shí)數(shù)x的取值范圍是.(2)存在,使得成立,即,顯然.(i)當(dāng)時(shí),要使成立,即需成立,即需成立.,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,.(ii)當(dāng)時(shí),要使成立,即需成立,即需成立,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),.綜上得實(shí)數(shù)m的取值范圍是.【點(diǎn)睛】本題考查了恒成立問題和存在性問題,意在考查學(xué)生的綜合應(yīng)用能力.20、(Ⅰ)證明見解析;(Ⅱ)【解析】試題分析:(Ⅰ)連接AC,設(shè)AC∩BD=Q,又點(diǎn)E是PC的中點(diǎn),則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點(diǎn)M,則FM⊥平面ABCD,進(jìn)一步利用求得最后利用平行線分線段成比例求出λ的值試題解析:(Ⅰ)連接AC,設(shè)AC∩BD=Q,又點(diǎn)E是PC的中點(diǎn),則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE(Ⅱ)解:依據(jù)題意可得:PA=AB=PB=2,取AB中點(diǎn)O,所以PO⊥AB,且又平面PAB⊥平面ABCD,則PO⊥平面ABCD;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代化養(yǎng)殖場技術(shù)員聘用合同
- 劇院大理石供應(yīng)合同
- 歷史建筑外墻保溫施工合同模板
- 國際咨詢租賃合同模板
- 語言學(xué)校暖氣安裝施工合同
- 溫泉度假村假山施工合同
- 旅游導(dǎo)游班主任招聘合同
- 宅基地他用權(quán)協(xié)議
- 水上運(yùn)動(dòng)泵機(jī)租賃合同
- 健身市場污水排放系統(tǒng)安裝合同
- 公安機(jī)關(guān)執(zhí)法執(zhí)勤規(guī)范用語
- 如何發(fā)揮采購在公司高質(zhì)量發(fā)展中作用
- 2023-2024學(xué)年湖南省長沙市雨花區(qū)外研版(三起)五年級(jí)上冊(cè)期末質(zhì)量檢測英語試卷
- 監(jiān)理質(zhì)量評(píng)估報(bào)告
- 《中國封建社會(huì)》課件
- 藥物代謝動(dòng)力學(xué)-中國藥科大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 血液科護(hù)士的營養(yǎng)與膳食指導(dǎo)
- 短視頻實(shí)習(xí)運(yùn)營助理
- 互聯(lián)網(wǎng)醫(yī)療服務(wù)創(chuàng)業(yè)計(jì)劃書
- 對(duì)加快推進(jìn)新型工業(yè)化的認(rèn)識(shí)及思考
- 上海交通大學(xué)2016年622物理化學(xué)(回憶版)考研真題
評(píng)論
0/150
提交評(píng)論