版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
重慶康德卷2024年高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知與的夾角為,,,則()A. B. C. D.2.在直角中,三條邊恰好為三個連續(xù)的自然數(shù),以三個頂點(diǎn)為圓心的扇形的半徑為1,若在中隨機(jī)地選取個點(diǎn),其中有個點(diǎn)正好在扇形里面,則用隨機(jī)模擬的方法得到的圓周率的近似值為()A. B. C. D.3.在中,角A,B,C所對的邊分別為a,b,c,,,,則等于()A. B. C. D.14.已知弧度數(shù)為2的圓心角所對的弦長也是2,則這個圓心角所對的弧長是()A.2 B. C. D.5.在中,已知,,若點(diǎn)在斜邊上,,則的值為().A.6 B.12 C.24 D.486.已知數(shù)列是等比數(shù)列,若,且公比,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.若實(shí)數(shù)x,y滿足,則z=x+y的最小值為()A.2 B.3 C.4 D.58.執(zhí)行如下圖所示的程序框圖,若輸出的,則輸入的的值為()A. B. C. D.9.在四邊形中,,,將沿折起,使平面平面,構(gòu)成三棱錐,如圖,則在三棱錐中,下列結(jié)論正確的是()A.平面平面B.平面平面C.平面平面D.平面平面10.設(shè),,若是與的等比中項(xiàng),則的最小值為()A. B. C.3 D.二、填空題:本大題共6小題,每小題5分,共30分。11.對于下列數(shù)排成的數(shù)陣:它的第10行所有數(shù)的和為________12.若兩個正實(shí)數(shù)滿足,且不等式有解,則實(shí)數(shù)的取值范圍是____________.13.設(shè)直線與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若,則圓C的面積為________14.設(shè)當(dāng)時,函數(shù)取得最大值,則______.15.函數(shù)的值域?yàn)開_______.16.的值為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓A:,圓B:.(Ⅰ)求經(jīng)過圓A與圓B的圓心的直線方程;(Ⅱ)已知直線l:,設(shè)圓心A關(guān)于直線l的對稱點(diǎn)為,點(diǎn)C在直線l上,當(dāng)?shù)拿娣e為14時,求點(diǎn)C的坐標(biāo).18.已知正項(xiàng)數(shù)列的前項(xiàng)和為,對任意,點(diǎn)都在函數(shù)的圖象上.(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列,求數(shù)列的前項(xiàng)和;(3)已知數(shù)列滿足,若對任意,存在使得成立,求實(shí)數(shù)的取值范圍.19.已知圓,為坐標(biāo)原點(diǎn),動點(diǎn)在圓外,過點(diǎn)作圓的切線,設(shè)切點(diǎn)為.(1)若點(diǎn)運(yùn)動到處,求此時切線的方程;(2)求滿足的點(diǎn)的軌跡方程.20.已知直線與圓相交于,兩點(diǎn).(1)若,求;(2)在軸上是否存在點(diǎn),使得當(dāng)變化時,總有直線、的斜率之和為0,若存在,求出點(diǎn)的坐標(biāo):若不存在,說明理由.21.如圖,正方體棱長為,連接,,,,,,得到一個三棱錐,求:(1)三棱錐的表面積與正方體表面積的比值;(2)三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
將等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律和定義得出關(guān)于的二次方程,解出即可.【詳解】將等式兩邊平方得,,即,整理得,,解得,故選:A.【點(diǎn)睛】本題考查平面向量模的計(jì)算,在計(jì)算向量模的時候,一般將向量模的等式兩邊平方,利用平面向量數(shù)量積的定義和運(yùn)算律進(jìn)行計(jì)算,考查運(yùn)算求解能力,屬于中等題.2、B【解析】由題直角中,三條邊恰好為三個連續(xù)的自然數(shù),設(shè)三邊為解得以三個頂點(diǎn)為圓心的扇形的面積和為由題故選B.3、D【解析】
根據(jù)題意,由正弦定理得,再把,,代入求解.【詳解】由正弦定理,得,所以.故選:D【點(diǎn)睛】本題主要考查了正弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4、B【解析】
先由已知條件求出扇形的半徑為,再結(jié)合弧長公式求解即可.【詳解】解:設(shè)扇形的半徑為,由弧度數(shù)為2的圓心角所對的弦長也是2,可得,由弧長公式可得:這個圓心角所對的弧長是,故選:B.【點(diǎn)睛】本題考查了扇形的弧長公式,重點(diǎn)考查了運(yùn)算能力,屬基礎(chǔ)題.5、C【解析】試題分析:因?yàn)?,,,所以==+==,故選C.考點(diǎn):1、平面向量的加減運(yùn)算;2、平面向量的數(shù)量積運(yùn)算.6、C【解析】
由可得,結(jié)合可得結(jié)果.【詳解】,,,,,,故選C.【點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)公式,意在考查對基礎(chǔ)知識的掌握與應(yīng)用,屬于基礎(chǔ)題.7、D【解析】
由約束條件畫出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由實(shí)數(shù),滿足作出可行域,如圖:聯(lián)立,解得,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過時,直線在軸上的截距最小,此時有最小值為.故選:D.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.8、D【解析】由題意,當(dāng)輸入,則;;;,終止循環(huán),則輸出,所以,故選D.9、D【解析】
折疊過程中,仍有,根據(jù)平面平面可證得平面,從而得到正確的選項(xiàng).【詳解】在直角梯形中,因?yàn)闉榈妊苯侨切?,故,所以,故,折起后仍然滿足.因?yàn)槠矫嫫矫妫矫?,平面平面,所以平面,因平面,所?又因?yàn)椋云矫?,因平面,所以平面平?【點(diǎn)睛】面面垂直的判定可由線面垂直得到,而線面垂直可通過線線垂直得到,注意面中兩條直線是相交的.由面面垂直也可得到線面垂直,注意線在面內(nèi)且線垂直于兩個平面的交線.10、C【解析】
先由題意求出,再結(jié)合基本不等式,即可求出結(jié)果.【詳解】因?yàn)槭桥c的等比中項(xiàng),所以,故,因?yàn)?,,所以,?dāng)且僅當(dāng),即時,取等號;故選C【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用,熟記基本不等式即可,屬于常考題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由題意得第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,再根據(jù)奇數(shù)為負(fù)數(shù),偶數(shù)為正數(shù),得到第10行的各個數(shù),由此能求出第10行所有數(shù)的和.【詳解】第1行1個數(shù),第2行2個數(shù),則第9行9個數(shù),故第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,且奇數(shù)為負(fù)數(shù),偶數(shù)為正數(shù),故第10行所有數(shù)的和為,故答案為:.【點(diǎn)睛】本題以數(shù)陣為背景,觀察數(shù)列中項(xiàng)的特點(diǎn),求數(shù)列通項(xiàng)和前項(xiàng)和,考查邏輯推理能力和運(yùn)算求解能力,求解時要注意等差數(shù)列性質(zhì)的合理運(yùn)用.12、【解析】試題分析:因?yàn)椴坏仁接薪?,所以,因?yàn)椋?,所以,?dāng)且僅當(dāng),即時,等號是成立的,所以,所以,即,解得或.考點(diǎn):不等式的有解問題和基本不等式的求最值.【方法點(diǎn)晴】本題主要考查了基本不等式在最值中的應(yīng)用,不等式的有解問題,在應(yīng)用基本不等式求解最值時,呀注意“一正、二定、三相等”的判斷,運(yùn)用基本不等式解題的關(guān)鍵是尋找和為定值或是積為定值,難點(diǎn)在于如何合理正確的構(gòu)造出定值,對于不等式的有解問題一般選用參數(shù)分離法,轉(zhuǎn)化為函數(shù)的最值或借助數(shù)形結(jié)合法求解,屬于中檔試題.13、【解析】因?yàn)閳A心坐標(biāo)與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應(yīng)填答案.14、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,當(dāng)x-φ=2kπ+(k∈Z)時,函數(shù)f(x)取得最大值,即θ=2kπ++φ時,函數(shù)f(x)取到最大值,所以cosθ=-sinφ=-.15、【解析】
利用反三角函數(shù)的單調(diào)性即可求解.【詳解】函數(shù)是定義在上的增函數(shù),函數(shù)在區(qū)間上單調(diào)遞增,,,函數(shù)的值域是.故答案為:【點(diǎn)睛】本題考查了反三角函數(shù)的單調(diào)性以及反三角函數(shù)值,屬于基礎(chǔ)題.16、【解析】
由反余弦可知,由此可計(jì)算出的值.【詳解】.故答案為:.【點(diǎn)睛】本題考查正切值的計(jì)算,涉及反余弦的應(yīng)用,求出反余弦值是關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)(Ⅱ)或【解析】
(Ⅰ)由已知求得,的坐標(biāo),再由直線方程的兩點(diǎn)式得答案;(Ⅱ)求出的坐標(biāo),再求出以及所在直線方程,設(shè),利用點(diǎn)到直線的距離公式求出到所在直線的距離,代入三角形面積公式解得值,進(jìn)而可得的坐標(biāo).【詳解】(Ⅰ)將圓:化為:,所以,圓:化為:,所以,所以經(jīng)過圓與圓的圓心的直線方程為:,即.(Ⅱ)如圖,設(shè),由題意可得,解得,即,∴,所在直線方程為,即,設(shè),則到所在直線的距離,由,解得或,∴點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查直線與圓位置關(guān)系的應(yīng)用,考查點(diǎn)關(guān)于直線的對稱點(diǎn)的求法,考查運(yùn)算求解能力,屬于中檔題.18、(1);(2);(3).【解析】
(1)將點(diǎn)代入函數(shù)的解析式得到,令,由可求出的值,令,由得,兩式相減得出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項(xiàng)公式可求出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,利用錯位相減法求出數(shù)列的前項(xiàng)和;(3)利用分組求和法與裂項(xiàng)法求出數(shù)列的前項(xiàng)和,由題意得出,判斷出數(shù)列各項(xiàng)的符號,得出數(shù)列的最大值為,利用函數(shù)的單調(diào)性得出該函數(shù)在區(qū)間上的最大值為,然后解不等式可得出實(shí)數(shù)的取值范圍.【詳解】(1)將點(diǎn)代入函數(shù)的解析式得到.當(dāng)時,,即,解得;當(dāng)時,由得,上述兩式相減得,得,即.所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,因此,;(2),,因此,①,②由①②得,所以;(3).令為的前項(xiàng)和,則.因?yàn)?,,,,?dāng)時,,令,,令,則,當(dāng)時,,此時,數(shù)列為單調(diào)遞減數(shù)列,,則,即,那么當(dāng)時,數(shù)列為單調(diào)遞減數(shù)列,此時,則.因此,數(shù)列的最大值為.又,函數(shù)單調(diào)遞增,此時,函數(shù)的最大值為.因?yàn)閷θ我獾模嬖冢?所以,解得,因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用等比數(shù)列前項(xiàng)和求數(shù)列通項(xiàng),同時也考查了錯位相減法求和以及數(shù)列不等式恒成立問題,解題時要充分利用數(shù)列的單調(diào)性求出數(shù)列的最大項(xiàng)或最小項(xiàng)的值,考查化歸與轉(zhuǎn)化思想的應(yīng)用,屬于難題.19、(1)或;(2).【解析】
解:把圓C的方程化為標(biāo)準(zhǔn)方程為(x+1)2+(y-2)2=4,∴圓心為C(-1,2),半徑r=2.(1)當(dāng)l的斜率不存在時,此時l的方程為x=1,C到l的距離d=2=r,滿足條件.當(dāng)l的斜率存在時,設(shè)斜率為k,得l的方程為y-3=k(x-1),即kx-y+3-k=0,則=2,解得k=.∴l(xiāng)的方程為y-3=(x-1),即3x+4y-15=0.綜上,滿足條件的切線l的方程為或.(2)設(shè)P(x,y),則|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,∵|PM|=|PO|.∴(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0,∴點(diǎn)P的軌跡方程為.考點(diǎn):直線與圓的位置關(guān)系;圓的切線方程;點(diǎn)的軌跡方程.20、(1);(2)存在.【解析】
(1)由題得到的距離為,即得,解方程即得解;(2)設(shè),,存在點(diǎn)滿足題意,即,把韋達(dá)定理代入方程化簡即得解.【詳解】(1)因?yàn)閳A,所以圓心坐標(biāo)為,半徑為2,因?yàn)?,所以到的距離為,由點(diǎn)到直線的距離公式可得:,解得.(2)設(shè),,則得,因?yàn)?,所以,?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版電力工程設(shè)計(jì)咨詢合同2篇
- 二零二五年度高新技術(shù)企業(yè)承包商擔(dān)保合同3篇
- 二零二五版戶外用品促銷員活動策劃合同2篇
- 二零二五年度酒店前臺正規(guī)雇傭合同范本(含勞動合同變更及續(xù)簽規(guī)則)3篇
- 二零二五版港口安全評價(jià)與安全管理合同3篇
- 二零二五版環(huán)保工程保險(xiǎn)合同3篇
- 二零二五版外資企業(yè)往來借款稅務(wù)籌劃合同3篇
- 二零二五年財(cái)務(wù)顧問企業(yè)財(cái)務(wù)管理咨詢合同3篇
- 二零二五版智能家居產(chǎn)品銷售安裝合同2篇
- 二零二五年度鋼筋行業(yè)購銷合同規(guī)范范本5篇
- 《阻燃材料與技術(shù)》課件 第8講 阻燃木質(zhì)材料
- 低空經(jīng)濟(jì)的社會接受度與倫理問題分析
- JGJ120-2012建筑基坑支護(hù)技術(shù)規(guī)程-20220807013156
- 英語代詞專項(xiàng)訓(xùn)練100(附答案)含解析
- GB/T 4732.1-2024壓力容器分析設(shè)計(jì)第1部分:通用要求
- 《采礦工程英語》課件
- NB-T31045-2013風(fēng)電場運(yùn)行指標(biāo)與評價(jià)導(dǎo)則
- NB-T+10488-2021水電工程砂石加工系統(tǒng)設(shè)計(jì)規(guī)范
- 天津市和平區(qū)2023-2024學(xué)年七年級下學(xué)期6月期末歷史試題
- 微型消防站消防員培訓(xùn)內(nèi)容
- (完整版)鋼筋加工棚驗(yàn)算
評論
0/150
提交評論