版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省第五屆2023-2024學(xué)年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.與直線垂直于點的直線的一般方程是()A. B. C. D.2.若向量=,||=2,若·(-)=2,則向量與的夾角()A. B. C. D.3.已知圓x2+y2+2x-6y+5a=0關(guān)于直線y=x+b成軸對稱圖形,則A.(0,8) B.(-∞,8) C.(-∞,16)4.如圖,正方體的棱長為1,線段上有兩個動點E、F,且,則下列結(jié)論中錯誤的是A.B.C.三棱錐的體積為定值D.5.已知2弧度的圓心角所對的弧長為2,則這個圓心角所對的弦長是()A. B. C. D.6.sin480°等于()A. B. C. D.7.已知,,,若,則等于()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.12 B.18C.24 D.309.已知正四面體ABCD中,E是AB的中點,則異面直線CE與BD所成角的余弦值為()A. B. C. D.10.若且,則的最小值是()A.6 B.12 C.24 D.16二、填空題:本大題共6小題,每小題5分,共30分。11.若是等比數(shù)列,,,則________12.執(zhí)行如圖所示的程序框圖,則輸出的S的值是______.13.在等比數(shù)列中,,,則________.14.已知直線過點,,則直線的傾斜角為______.15._____16.圓的一條經(jīng)過點的切線方程為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,中,,角的平分線長為1.(1)求;(2)求邊的長.18.已知函數(shù).(1)若函數(shù)的周期,且滿足,求及的遞增區(qū)間;(2)若,在上的最小值為,求的最小值.19.已知圓過點和,且圓心在直線上.(Ⅰ)求圓的標準方程;(Ⅱ)求直線:被圓截得的弦長.20.一汽車廠生產(chǎn),,三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表(單位:輛):按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.轎車轎車轎車舒適型100150標準型300450600(1)求的值;(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把這8輛轎車的得分看作一個總體,從中任取一個得分數(shù),
記這8輛轎車的得分的平均數(shù)為,定義事件,且函數(shù)沒有零點,求事件發(fā)生的概率.21.已知關(guān)于的不等式.(1)當(dāng)時,解上述不等式.(2)當(dāng)時,解上述關(guān)于的不等式
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由已知可得這就是所求直線方程,故選A.2、A【解析】
根據(jù)向量的數(shù)量積運算,向量的夾角公式可以求得.【詳解】由已知可得:,得,設(shè)向量與的夾角為,則所以向量與的夾角為故選A.【點睛】本題考查向量的數(shù)量積運算和夾角公式,屬于基礎(chǔ)題.3、D【解析】
根據(jù)圓關(guān)于直線成軸對稱圖形得b=4,根據(jù)二元二次方程表示圓得a<2,再根據(jù)指數(shù)函數(shù)的單調(diào)性得4a【詳解】解:∵圓x2+y∴圓心(-1,3)在直線∴3=-1+b,解得b=4又圓的半徑r=4+36-20a2>0b故選:D.【點睛】本題考查了直線與圓的位置關(guān)系,屬中檔題.4、D【解析】可證,故A正確;由∥平面ABCD,可知,B也正確;連結(jié)BD交AC于O,則AO為三棱錐的高,,三棱錐的體積為為定值,C正確;D錯誤。選D。5、D【解析】
由弧長公式求出圓半徑,再在直角三角形中求解.【詳解】,如圖,設(shè)是中點,則,,,∴.故選D.【點睛】本題考查扇形弧長公式,在求弦長時,常在直角三角形中求解.6、D【解析】試題分析:因為,所以選D.考點:誘導(dǎo)公式,特殊角的三角函數(shù)值.7、A【解析】
根據(jù)向量的坐標運算法則,依據(jù)題意列出等式求解.【詳解】由題知:,,,因為,所以,故,故選:A.【點睛】本題考查向量的坐標運算,屬于基礎(chǔ)題.8、C【解析】試題分析:由三視圖可知,幾何體是三棱柱消去一個同底的三棱錐,如圖所示,三棱柱的高為5,消去的三棱錐的高為3,三棱錐與三棱柱的底面為直角邊長分別為3和4的直角三角形,所以幾何體的體積為V=1考點:幾何體的三視圖及體積的計算.【方法點晴】本題主要考查了幾何體的三視圖的應(yīng)用及體積的計算,著重考查了推理和運算能力及空間想象能力,屬于中檔試題,解答此類問題的關(guān)鍵是根據(jù)三視圖的規(guī)則“長對正、寬相等、高平齊”的原則,還原出原幾何體的形狀,本題的解答的難點在于根據(jù)幾何體的三視圖還原出原幾何體和幾何體的度量關(guān)系,屬于中檔試題.9、B【解析】試題分析:如圖,取中點,連接,因為是中點,則,或其補角就是異面直線所成的角,設(shè)正四面體棱長為1,則,,.故選B.考點:異面直線所成的角.【名師點睛】求異面直線所成的角的關(guān)鍵是通過平移使其變?yōu)橄嘟恢本€所成角,但平移哪一條直線、平移到什么位置,則依賴于特殊的點的選取,選取特殊點時要盡可能地使它與題設(shè)的所有相減條件和解題目標緊密地聯(lián)系起來.如已知直線上的某一點,特別是線段的中點,幾何體的特殊線段.10、D【解析】試題分析:,當(dāng)且僅當(dāng)時等號成立,所以最小值為16考點:均值不等式求最值二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)等比數(shù)列的通項公式求解公比再求和即可.【詳解】設(shè)公比為,則.故故答案為:【點睛】本題主要考查了等比數(shù)列的基本量求解,屬于基礎(chǔ)題型.12、4【解析】
模擬程序運行,觀察變量值的變化,尋找到規(guī)律周期性,確定輸出結(jié)果.【詳解】第1次循環(huán):,;第2次循環(huán):,;第3次循環(huán):,;第4次循環(huán):,;…;S關(guān)于i以4為周期,最后跳出循環(huán)時,此時.故答案為:4.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題關(guān)鍵是由程序確定變量變化的規(guī)律:周期性.13、【解析】
根據(jù)等比數(shù)列中,,得到公比,再寫出和,從而得到.【詳解】因為為等比數(shù)列,,,所以,所以,,所以.故答案為:.【點睛】本題考查等比數(shù)列通項公式中的基本量計算,屬于簡單題.14、【解析】
根據(jù)兩點求斜率的公式求得直線的斜率,然后求得直線的傾斜角.【詳解】依題意,故直線的傾斜角為.【點睛】本小題主要考查兩點求直線斜率的公式,考查直線斜率和傾斜角的對應(yīng)關(guān)系,屬于基礎(chǔ)題.15、【解析】
將寫成,切化弦后,利用兩角和差余弦公式可將原式化為,利用二倍角公式可變?yōu)?,由可化簡求得結(jié)果.【詳解】本題正確結(jié)果:【點睛】本題考查利用三角恒等變換公式進行化簡求值的問題,涉及到兩角和差余弦公式、二倍角公式的應(yīng)用.16、【解析】
根據(jù)題意,設(shè)為,設(shè)過點圓的切線為,分析可得在圓上,求出直線的斜率,分析可得直線的斜率,由直線的點斜式方程計算可得答案.【詳解】根據(jù)題意,設(shè)為,設(shè)過點圓的切線為,圓的方程為,則點在圓上,則,則直線的斜率,則直線的方程為,變形可得,故答案為.【點睛】本題考查圓的切線方程,注意分析點與圓的位置關(guān)系.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由題意知為銳角,利用二倍角余弦公式結(jié)合條件可計算出的值;(2)利用內(nèi)角和定理以及誘導(dǎo)公式計算出,在中利用正弦定理可計算出.【詳解】(1),則B為銳角,;(2),在中,由,得.【點睛】本題考查二倍角余弦公式、以及利用正弦定理解三角形,解三角形有關(guān)問題時,要根據(jù)已知元素類型合理選擇正弦定理與余弦定理,考查計算能力,屬于中等題.18、(1),;(2)2.【解析】
(1)由函數(shù)的性質(zhì)知,關(guān)于直線對稱,又函數(shù)的周期,兩個條件兩個未知數(shù),列兩個方程,所以可以求出,進而得到的解析式,求出的遞增區(qū)間;(2)求出的所有解,再解不等式,即可求出的最小值.【詳解】(1),由知,∴對稱軸∴,又,,由,得,函數(shù)遞增區(qū)間為;(2)由于,在上的最小值為,所以,即,所以,所以.【點睛】本題主要考查三角函數(shù)解析式、單調(diào)區(qū)間以及最值的求法,特別注意用代入法求單調(diào)區(qū)間時,要考慮復(fù)合函數(shù)的單調(diào)性,以免求錯.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)設(shè)出圓心坐標和圓的標準方程,將點帶入求出結(jié)果即可;(Ⅱ)利用圓心到直線的距離和圓的半徑解直角三角形求得弦長.【詳解】解:(Ⅰ)由題意可設(shè)圓心坐標為,則圓的標準方程為,∴解得故圓的標準方程為.(Ⅱ)圓心到直線的距離,∴直線被圓截得的弦長為.【點睛】本題考查了圓的方程,以及直線與圓相交求弦長的知識,屬于基礎(chǔ)題.20、(1)400;(2);(3)【解析】
(1)由分層抽樣按比例可得;(2)把5個樣本編號,用列舉法列出任取2輛的所有基本事件,得出至少有1輛舒適型轎車的基本事件,計數(shù)后可得概率.(3)求出,確定事件所含的個數(shù)后可得概率.【詳解】(1)由題意,解得;(2)C類產(chǎn)品中舒適型和標準型產(chǎn)品數(shù)量比為,因此5人樣品中舒適型抽取了2輛,標準型抽取了3輛,編號為,任取2輛的基本事件有:共10個,其中至少有1輛舒適型轎車的基本事件有共7個,所求概率為.(3)由題意,滿足的有共6個,函數(shù)沒有零點,則,解得,再去掉,還有4個,∴所求概率為.【點睛】本題考查分層抽樣,考查古典概型,解題關(guān)鍵是用列舉法寫出所有的基本事件.21、(1).(2)當(dāng)時,解集為,當(dāng)時,解集為,當(dāng)時,解集為或【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度木工工藝研發(fā)與創(chuàng)新資助合同
- 2025年門禁產(chǎn)品銷售與客戶定制化解決方案合同范本3篇
- 2025年度農(nóng)藥殘留檢測技術(shù)服務(wù)合同書2篇
- 2025年度噴泉景區(qū)旅游推廣及市場營銷合同
- 艾滋病病毒王利沙HIV講解
- 2025年度宅基地使用權(quán)及房產(chǎn)繼承合同
- 2025年度旅游行業(yè)導(dǎo)游及服務(wù)人員派遣合同2篇
- 二零二五年度雛雞養(yǎng)殖與休閑農(nóng)業(yè)融合發(fā)展合同4篇
- 2025版民間抵押資產(chǎn)處置合同樣本3篇
- 2025年建筑行業(yè)自動化的機遇與挑戰(zhàn)
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年參考題庫含答案解析
- 國旗班指揮刀訓(xùn)練動作要領(lǐng)
- 2024年國家工作人員學(xué)法用法考試題庫及參考答案
- 國家公務(wù)員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 2021-2022學(xué)年遼寧省重點高中協(xié)作校高一上學(xué)期期末語文試題
- 同等學(xué)力英語申碩考試詞匯(第六版大綱)電子版
- 人教版五年級上冊遞等式計算100道及答案
- 墓地個人協(xié)議合同模板
- 2024年部編版初中語文各年級教師用書七年級(上冊)
- 2024年新課標全國Ⅰ卷語文高考真題試卷(含答案)
評論
0/150
提交評論