版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省黃山市屯溪第二中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,有一輛汽車在一條水平的公路上向正西行駛,汽車在點測得公路北側(cè)山頂?shù)难鼋菫?0°,汽車行駛后到達點測得山頂在北偏西30°方向上,且仰角為45°,則山的高度為()A. B. C. D.2.若關(guān)于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)3.已知且,則的取值范圍是()A. B. C. D.4.對一切實數(shù),不等式恒成立.則的取值范圍是()A. B.C. D.5.已知函數(shù)f(x),則f[f(2)]=()A.1 B.2 C.3 D.46.下面結(jié)論中,正確結(jié)論的是()A.存在兩個不等實數(shù),使得等式成立B.(0<x<π)的最小值為4C.若是等比數(shù)列的前項的和,則成等比數(shù)列D.已知的三個內(nèi)角所對的邊分別為,若,則一定是銳角三角形7.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.8.若,滿足,則的最大值為().A. B. C. D.9.《九章算術(shù)》中有這樣一個問題:今有女子善織,日增等尺,七日織二十八尺,第二日、第五日、第八日所織之和為十五尺,問若聘該女子做工半月(15日),一共能織布幾尺()A.75 B.85 C.105 D.12010.與直線平行,且到的距離為的直線方程為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓錐的底面半徑為3,體積是,則圓錐側(cè)面積等于___________.12.設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項和為{Sn}.若,,則q=______________.13.已知是以為首項,為公差的等差數(shù)列,是其前項和,則數(shù)列的最小項為第___項14.已知角的終邊上一點P的坐標為,則____.15.設(shè)數(shù)列的通項公式,則數(shù)列的前20項和為____________.16.計算:__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.2015年我國將加快階梯水價推行,原則是“?;?、建機制、促節(jié)約”,其中“?;尽笔侵副WC至少80%的居民用戶用水價格不變.為響應(yīng)國家政策,制定合理的階梯用水價格,某城市采用簡單隨機抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶和20戶居民的年人均用水量進行調(diào)研,抽取的數(shù)據(jù)的莖葉圖如下(單位:噸):(1)在郊區(qū)的這5戶居民中隨機抽取2戶,求其年人均用水量都不超過30噸的概率;(2)設(shè)該城市郊區(qū)和城區(qū)的居民戶數(shù)比為,現(xiàn)將年人均用水量不超過30噸的用戶定義為第一階梯用戶,并保證這一梯次的居民用戶用水價格保持不變.試根據(jù)樣本估計總體的思想,分析此方案是否符合國家“?;尽闭撸?8.某廠家擬在2020年舉行促銷活動,經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元,滿足(為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).(1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費用(萬元)的函數(shù);(2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?19.已知集合,,求.20.數(shù)列中,,(為常數(shù),1,2,3,…),且.(1)求c的值;(2)求證:①;②;(3)比較++…+與的大小,并加以證明.21.某學(xué)校為了了解高三文科學(xué)生第一學(xué)期數(shù)學(xué)的復(fù)習(xí)效果.從高三第一學(xué)期期末考試成績中隨機抽取50名文科考生的數(shù)學(xué)成績,分成6組制成如圖所示的頻率分布直方圖.(1)試利用此頻率分布直方圖求的值及這50名同學(xué)數(shù)學(xué)成績的平均數(shù)的估計值;(2)該學(xué)校為制定下階段的復(fù)習(xí)計劃,從被抽取的成績在的同學(xué)中選出3位作為代表進行座談,若已知被抽取的成績在的同學(xué)中男女比例為,求至少有一名女生參加座談的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
通過題意可知:,設(shè)山的高度,分別在中求出,最后在中,利用余弦定理,列出方程,解方程求出的值.【詳解】由題意可知:.在中,.在中,.在中,由余弦定理可得:(舍去),故本題選D.【點睛】本題考查了余弦定理的應(yīng)用,弄清題目中各個角的含義是解題的關(guān)鍵.2、B【解析】
由題意,得出a≠0,再分析不等式開口和判別式,可得結(jié)果.【詳解】由題,因為為一元二次不等式,所以a≠0又因為ax所以a>0Δ=故選B【點睛】本題考查了一元二次不等式解法,利用二次函數(shù)圖形解題是關(guān)鍵,屬于基礎(chǔ)題.3、A【解析】分析:,由,可得,又,可得,化簡整理即可得出.詳解:,由,可得,又,可得,化為,解得,則的取值范圍是.故選:A.點睛:本題考查了基本不等式的性質(zhì)、一元二次不等式的解法,考查了推理能力與計算能力,屬于中檔題.4、A【解析】
時,恒成立.時,原不等式等價于.由的最小值是2,可得,即.選A.5、B【解析】
根據(jù)分段函數(shù)的表達式求解即可.【詳解】由題.故選:B【點睛】本題主要考查了分段函數(shù)的求值,屬于基礎(chǔ)題型.6、A【解析】
對各個選項逐一判斷,對于選項A,由,代入計算,即可判斷是否正確;對于選項B,設(shè),結(jié)合函數(shù)的單調(diào)性,即可判斷是否正確;對于選項C,由公比為為偶數(shù),即可判斷是否正確;對于選項D,由余弦定理,即可判斷是否正確.【詳解】對于選項A,兩個不等實數(shù),使得等式成立,故A正確;對于選項B,若設(shè)設(shè),可得在遞減,即函數(shù)的最小值為,故B錯誤;對于選項C,是等比數(shù)列的前項的和,當公比,為偶數(shù)時,則,均為,不能夠成等比數(shù)列,故C錯誤;對于選項D,中,若,可得,即為銳角,不能判斷一定是銳角三角形,故D錯誤.故選:A.【點睛】本題考查兩角和的正弦公式、基本不等式和等比數(shù)列的性質(zhì),以及余弦定理的應(yīng)用,屬于基礎(chǔ)題.7、A【解析】
分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉(zhuǎn)化為函數(shù)求最值。8、D【解析】作出不等式組,所表示的平面區(qū)域,如圖所示,當時,可行域為四邊形內(nèi)部,目標函數(shù)可化為,即,平移直線可知當直線經(jīng)過點時,直線的截距最大,從而最大,此時,,當時,可行域為三角形,目標函數(shù)可化為,即,平移直線可知當直線經(jīng)過點時,直線的截距最大,從而最大,,綜上,的最大值為.故選.點睛:利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標系內(nèi)作出可行域.(2)考慮目標函數(shù)的幾何意義,將目標函數(shù)進行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型).(3)確定最優(yōu)解:根據(jù)目標函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解.(4)求最值:將最優(yōu)解代入目標函數(shù)即可求出最大值或最小值.注意解答本題時不要忽視斜率不存在的情形.9、D【解析】設(shè)第一天織尺,第二天起每天比前一天多織尺,由已知得,,故選D.【方法點睛】本題主要考查等差數(shù)列的通項公式、等差數(shù)列的前項和公式,屬于中檔題.等差數(shù)列基本量的運算是等差數(shù)列的一類基本題型,數(shù)列中的五個基本量,一般可以“知二求三”,通過列方程組所求問題可以迎刃而解,另外,解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項和的關(guān)系.10、B【解析】試題分析:與直線平行的直線設(shè)為與的距離為考點:兩直線間的距離點評:兩平行直線間的距離二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:求圓錐側(cè)面積必須先求圓錐母線,既然已知體積,那么可先求出圓錐的高,再利用圓錐的性質(zhì)(圓錐的高,底面半徑,母線組成直角三角形)可得母線,,,,.考點:圓錐的體積與面積公式,圓錐的性質(zhì).12、【解析】將,兩個式子全部轉(zhuǎn)化成用,q表示的式子.即,兩式作差得:,即:,解之得:(舍去)13、【解析】
先求,利用二次函數(shù)性質(zhì)求最值即可【詳解】由題當時最小故答案為8【點睛】本題考查等差數(shù)列的求和公式,考查二次函數(shù)求最值,是基礎(chǔ)題14、【解析】
由已知先求,再由三角函數(shù)的定義可得即可得解.【詳解】解:由題意可得點到原點的距離,,由三角函數(shù)的定義可得,,,此時;故答案為.【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.15、【解析】
對去絕對值,得,再求得的前項和,代入=20即可求解【詳解】由題的前n項和為的前20項和,代入可得.故答案為:260【點睛】本題考查等差數(shù)列的前項和,去絕對值是關(guān)鍵,考查計算能力,是基礎(chǔ)題16、0【解析】
直接利用數(shù)列極限的運算法則,分子分母同時除以,然后求解極限可得答案.【詳解】解:,故答案為:0.【點睛】本題主要考查數(shù)列極限的運算法則,屬于基礎(chǔ)知識的考查.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)符合【解析】
:(1)先列舉出從5戶郊區(qū)居民用戶中隨機抽取2戶,其年人均用水量構(gòu)成的所有基本事件,再列舉其中年人均用水量都不超過30噸的基本事件,最后計算即可.(2)設(shè)該城市郊區(qū)的居民用戶數(shù)為,則其城區(qū)的居民用戶數(shù)為5a.依題意計算該城市年人均用水量不超過30噸的居民用戶的百分率.【詳解】解:(1)從5戶郊區(qū)居民用戶中隨機抽取2戶,其年人均用水量構(gòu)成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34)共10個.其中年人均用水量都不超過30噸的基本事件是:(19,25),(19,28),(25,28)共3個.設(shè)“從5戶郊區(qū)居民用戶中隨機抽取2戶,其年人均用水量都不超過30噸”的事件為,則所求的概率為.(2)設(shè)該城市郊區(qū)的居民用戶數(shù)為,則其城區(qū)的居民用戶數(shù)為5a.依題意,該城市年人均用水量不超過30噸的居民用戶的百分率為:.故此方案符合國家“?;尽闭撸军c睛】本題考查了古典概型在實際生活中的應(yīng)用,要緊扣題意從題目中抽象出數(shù)學(xué)計算的模型.18、(1);(2)廠家2020年的促銷費用投入3萬元時,廠家的利潤最大,為21萬元.【解析】
(1)由不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,可求k的值,再求出每件產(chǎn)品銷售價格的代數(shù)式,則利潤(萬元)表示為年促銷費用(萬元)的函數(shù)可求.(2)由(1)得,再根據(jù)均值不等式可解.注意取等號.【詳解】(1)由題意知,當時,所以,每件產(chǎn)品的銷售價格為元.所以2020年的利潤;(2)由(1)知,,當且僅當,即時取等號,該廠家2020年的促銷費用投入3萬元時,廠家的利潤最大,為21萬元.【點睛】考查均值不等式的應(yīng)用以及給定值求函數(shù)的參數(shù)及解析式.題目較易,考查的均值不等式,要注意取等號.19、【解析】
根據(jù)集合A,B的意義,求出集合A,B,再根據(jù)交集的運算求得結(jié)果即可.【詳解】對于集合A,,對于集合B,當x<1時,故B=;故A∩B=故答案為【點睛】本題考查了交集的運算,準確計算集合A,B是關(guān)鍵,是基礎(chǔ)題.20、(1);(2)①見證明;②見證明;(3)++…+,證明見解析【解析】
(1)將代入,結(jié)合可求出的值;(2)可知,,即可證明結(jié)論;(3)由題意可得,從而可得到,求和可得,然后作差,通過討論可比較二者大小.【詳解】(1)由題意:,.而,得,即,解得或,因為,所以滿足題意.(2)因為,所以.則.,因為,,所以,所以.(3)由,可得,從而,所以.因為,所以,所以.,,,,當n=1時,,故;當n=2時,,;當n≥3時,,則,.【點睛】本題主要考查了數(shù)列的遞推關(guān)系式和數(shù)列的求和,考查了不等式的證明,考查了學(xué)生的邏輯推理能力與計算能力,屬于難題.21、(1);平均數(shù)的估計值(2)【解析】
(1)根據(jù)各小矩形面積和為1可求得的值;由頻率分布直方圖,結(jié)合平均數(shù)的求法即可求解.(2)根據(jù)頻率分布直方圖先求得成績在的同學(xué)人數(shù),結(jié)合分層抽樣可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版本二手房買賣合同針對房產(chǎn)稅繳納的約定3篇
- 2025年個人水利工程建設(shè)與維護承包合同模板4篇
- 2025年度生態(tài)環(huán)保幕墻材料采購與安裝勞務(wù)分包合同范例4篇
- 二零二五版汽車4S店促銷員銷售服務(wù)合同3篇
- 2025年度新材料研發(fā)與應(yīng)用推廣咨詢服務(wù)合同4篇
- 二手住宅買賣合同(海南版2024)
- 專利技術(shù)成果實施許可合同(2024版)版B版
- 2025年度智慧城市運營管理出資合同4篇
- 二零二五年度危險品運輸合同框架協(xié)議2篇
- 二零二五年度寵物活體活體領(lǐng)養(yǎng)援助合同4篇
- 節(jié)前停工停產(chǎn)與節(jié)后復(fù)工復(fù)產(chǎn)安全注意事項課件
- 設(shè)備管理績效考核細則
- 中國人民銀行清算總中心直屬企業(yè)2023年招聘筆試上岸歷年典型考題與考點剖析附帶答案詳解
- (正式版)SJT 11449-2024 集中空調(diào)電子計費信息系統(tǒng)工程技術(shù)規(guī)范
- 廣州綠色金融發(fā)展現(xiàn)狀及對策的研究
- 人教版四年級上冊加減乘除四則混合運算300題及答案
- 合成生物學(xué)技術(shù)在生物制藥中的應(yīng)用
- 消化系統(tǒng)疾病的負性情緒與心理護理
- 高考語文文學(xué)類閱讀分類訓(xùn)練:戲劇類(含答案)
- 協(xié)會監(jiān)事會工作報告大全(12篇)
- WS-T 813-2023 手術(shù)部位標識標準
評論
0/150
提交評論