安徽省示范高中培優(yōu)聯(lián)盟2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第1頁
安徽省示范高中培優(yōu)聯(lián)盟2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第2頁
安徽省示范高中培優(yōu)聯(lián)盟2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第3頁
安徽省示范高中培優(yōu)聯(lián)盟2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第4頁
安徽省示范高中培優(yōu)聯(lián)盟2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省示范高中培優(yōu)聯(lián)盟2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)為等比數(shù)列的前n項和,若,,成等差數(shù)列,則()A.,,成等差數(shù)列 B.,,成等比數(shù)列C.,,成等差數(shù)列 D.,,成等比數(shù)列2.設(shè)等比數(shù)列的公比為,其前項和為,前項之積為,并且滿足條件:,,,下列結(jié)論中正確的是()A. B.C.是數(shù)列中的最大值 D.?dāng)?shù)列無最小值3.過點的圓的切線方程是()A. B.或C.或 D.或4.已知函數(shù),若存在滿足,且,則n的最小值為()A.3 B.4 C.5 D.65.當(dāng)為第二象限角時,的值是().A. B. C. D.6.若三棱錐的所有頂點都在球的球面上,平面,,,且三棱錐的體積為,則球的體積為()A. B. C. D.7.從3位男運動員和4位女運動員中選派3人參加記者招待會,至少有1位男運動員和1位女運動員的選法有()種A. B. C. D.8.一個三角形的三邊長成等比數(shù)列,公比為,則函數(shù)的值域為()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)9.函數(shù)的圖象如圖所示,為了得到的圖象,則只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度10.設(shè)和分別表示函數(shù)的最大值和最小值,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,其中是第二象限角,則____.12.在中,若,則等于__________.13.正方體中,分別是的中點,則所成的角的余弦值是__________.14.已知等差數(shù)列中,,,則該等差數(shù)列的公差的值是______.15.若圓:與圓:相交于,兩點,且兩圓在點處的切線互相垂直,則公共弦的長度是______.16.在中角所對的邊分別為,若則___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.若三點共線,求實數(shù)的值.18.在中,角的對邊分別為,已知.(1)求角;(2)若的面積為,求在上的投影.19.在△ABC中,a,b,c分別是角A,B,C的對邊,已知3(b2+c2)=3a2+2bc.(1)若sinB=cosC,求tanC的大小;(2)若a=2,△ABC的面積S=,且b>c,求b,c.20.已知函數(shù)(其中)的圖象如圖所示:(1)求函數(shù)的解析式及其對稱軸的方程;(2)當(dāng)時,方程有兩個不等的實根,求實數(shù)的取值范圍,并求此時的值.21.已知向量,,.(1)求函數(shù)的解析式及在區(qū)間上的值域;(2)求滿足不等式的x的集合.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

先說明不符合題意,由時,成等差數(shù)列,算得,然后用表示出來,即可得到本題答案.【詳解】設(shè)等比數(shù)列的公比為q,首項為,當(dāng)時,有,不滿足成等差數(shù)列;當(dāng)時,因為成等差數(shù)列,所以,即,化簡得,解得,所以,,,則成等差數(shù)列.故選:A【點睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合應(yīng)用,計算出等比數(shù)列的公比是關(guān)鍵,考查計算能力,屬于中等題.2、D【解析】

根據(jù)題干條件可得到數(shù)列>1,0<q<1,數(shù)列之和越加越大,故A錯誤;根據(jù)等比數(shù)列性質(zhì)得到進而得到B正確;由前n項積的性質(zhì)得到是數(shù)列中的最大值;從開始后面的值越來越小,但是都是大于0的,故沒有最小值.【詳解】因為條件:,,,可知數(shù)列>1,0<q<1,根據(jù)等比數(shù)列的首項大于0,公比大于0,得到數(shù)列項均為正,故前n項和,項數(shù)越多,和越大,故A不正確;因為根據(jù)數(shù)列性質(zhì)得到,故B不對;前項之積為,所有大于等于1的項乘到一起,能夠取得最大值,故是數(shù)列中的最大值.數(shù)列無最小值,因為從開始后面的值越來越小,但是都是大于0的,故沒有最小值.故D正確.故答案為D.【點睛】本題考查了等比數(shù)列的通項公式及其性質(zhì)、遞推關(guān)系、不等式的解法,考查了推理能力與計算能力,屬于中檔題.3、D【解析】

先由題意得到圓的圓心坐標(biāo),與半徑,設(shè)所求直線方程為,根據(jù)直線與圓相切,結(jié)合點到直線距離公式,即可求出結(jié)果.【詳解】因為圓的圓心為,半徑為1,由題意,易知所求切線斜率存在,設(shè)過點與圓相切的直線方程為,即,所以有,整理得,解得,或;因此,所求直線方程分別為:或,整理得或.故選D【點睛】本題主要考查求過圓外一點的切線方程,根據(jù)直線與圓相切,結(jié)合點到直線距離公式即可求解,屬于??碱}型.4、D【解析】

根據(jù)正弦函數(shù)的性質(zhì),對任意(i,j=1,2,3,…,n),都有,因此要使得滿足條件的n最小,則盡量讓更多的取值對應(yīng)的點是最值點,然后再對應(yīng)圖象取值.【詳解】,因為正弦函數(shù)對任意(i,j=1,2,3,…,n),都有,要使n取得最小值,盡可能多讓(i=1,2,3,…,n)取得最高點,因為,所以要使得滿足條件的n最小,如圖所示則需取,,,,,,即取,,,,,,即.故選:D【點睛】本題主要考查正弦函數(shù)的圖象,還考查了數(shù)形結(jié)合的思想方法,屬于中檔題.5、C【解析】

根據(jù)為第二象限角,,,去掉絕對值,即可求解.【詳解】因為為第二象限角,∴,,∴,故選C.【點睛】本題重點考查三角函數(shù)值的符合,三角函數(shù)在各個象限內(nèi)的符號可以結(jié)合口訣:一全正,二正弦,三正切,四余弦,增加記憶印象,屬于基礎(chǔ)題6、A【解析】

由的體積計算得高,已知將三棱錐的外接球,轉(zhuǎn)化為長2,寬2,高的長方體的外接球,求出半徑,可得答案.【詳解】∵,,故三棱錐的底面面積為,由平面,得,又三棱錐的體積為,得,所以三棱錐的外接球,相當(dāng)于長2,寬2,高的長方體的外接球,故球半徑,得,故外接球的體積.故選:A.【點睛】本題考查了三棱錐外接球的體積,三棱錐體積公式的應(yīng)用,根據(jù)已知計算出球的半徑是解答的關(guān)鍵,屬于中檔題.7、C【解析】

利用分類原理,選出的3人中,有1男2女,有2男1女,兩種情況相加得到選法總數(shù).【詳解】(1)3人中有1男2女,即;(2)3人中有2男1女,即;所以選法總數(shù)為,故選C.【點睛】分類加法原理和分步乘法原理進行計算時,要注意分類的標(biāo)準(zhǔn),不出現(xiàn)重復(fù)或遺漏情況,本題若是按先選1個男的,再選1個女的,最后從剩下的5人中選1人,則會出現(xiàn)重復(fù)現(xiàn)象.8、D【解析】

由題意先設(shè)出三邊為則由三邊關(guān)系:兩短邊和大于第三邊,分公比大于與公式在小于兩類解出公比的取值范圍,此兩者的并集是函數(shù)的定義域,再由二次函數(shù)的性質(zhì)求出它的值域,選出正確選項.【詳解】解:設(shè)三邊:則由三邊關(guān)系:兩短邊和大于第三邊,即

(1)當(dāng)時,,即,解得;

(2)當(dāng)時,為最大邊,,即,解得,

綜合(1)(2)得:,

又的對稱軸是,故函數(shù)在上是減函數(shù),在上是增函數(shù),

由于時,與時,,

所以函數(shù)的值域為,故選:D.【點睛】本題考查等比數(shù)列的性質(zhì)及二次函數(shù)的值域的求法,解答本題關(guān)鍵是熟練掌握等比數(shù)列的性質(zhì),能利用它建立不等式解出公比的取值范圍得出函數(shù)的定義域,熟練掌握二次函數(shù)的性質(zhì)也很重要,由此類題可以看出,扎實的雙基,嫻熟的基礎(chǔ)知識與公式的記憶是解題的知識保障.9、D【解析】

先根據(jù)圖象確定A的值,進而根據(jù)三角函數(shù)結(jié)果的點求出求與的值,確定函數(shù)的解析式,然后根據(jù)誘導(dǎo)公式將函數(shù)化為余弦函數(shù),再平移即可得到結(jié)果.【詳解】由題意,函數(shù)的部分圖象,可得,即,所以,再根據(jù)五點法作圖,可得,求得,故.函數(shù)的圖象向左平移個單位,可得的圖象,則只要將的圖象向右平移個單位長度可得的圖象,故選:D.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及三角函數(shù)的圖象變換的應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),以及三角函數(shù)的圖象變換是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.10、C【解析】

根據(jù)余弦函數(shù)的值域,確定出的最大值和最小值,即可計算出的值.【詳解】因為的值域為,所以的最大值,所以的最小值,所以.故選:C.【點睛】本題考查余弦型函數(shù)的最值問題,難度較易.求解形如的函數(shù)的值域,注意借助余弦函數(shù)的有界性進行分析.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

首先要用誘導(dǎo)公式得到角的正弦值,根據(jù)角是第二象限的角得到角的余弦值,再用誘導(dǎo)公式即可得到結(jié)果.【詳解】解:,又是第二象限角故,故答案為.【點睛】本題考查同角的三角函數(shù)的關(guān)系,本題解題的關(guān)鍵是誘導(dǎo)公式的應(yīng)用,熟練應(yīng)用誘導(dǎo)公式是解決三角函數(shù)問題的必備技能,屬于基礎(chǔ)題.12、;【解析】

由條件利用三角形內(nèi)角和公式求得,再利用正弦定理即可求解.【詳解】在中,,,,即,,故答案為:【點睛】本題考查了正弦定理解三角形,需熟記定理的內(nèi)容,屬于基礎(chǔ)題.13、【解析】

取的中點,由得出異面直線與所成的角為,然后在由余弦定理計算出,可得出結(jié)果.【詳解】取的中點,由且可得為所成的角,設(shè)正方體棱長為,中利用勾股定理可得,又,由余弦定理可得,故答案為.【點睛】本題考查異面直線所成角的計算,一般利用平移直線找出異面直線所成的角,再選擇合適的三角形,利用余弦定理或銳角三角函數(shù)來計算,考查空間想象能力與計算能力,屬于中等題.14、【解析】

根據(jù)等差數(shù)列的通項公式即可求解【詳解】故答案為:【點睛】本題考查等差通項基本量的求解,屬于基礎(chǔ)題15、【解析】

根據(jù)兩圓在點處的切線互相垂直,得出是直角三角形,求出,然后兩圓相減求出公共弦的直線方程,運用點到直線的距離公式求出圓心到公共弦的距離,進而求出公共弦長.【詳解】由題意,圓圓心坐標(biāo),半徑,圓圓心坐標(biāo),半徑,因為兩圓相交于點,且兩圓在點處的切線互相垂直,所以是直角三角形,,所以,由兩點間距離公式,,所以,解得,所以圓:,兩圓方程相減,得,即,所以公共弦:,圓心到公共弦的距離,故公共弦長故答案為:【點睛】本題主要考查兩圓公共弦的方程、圓弦長的求法和點到直線的距離公式,考查學(xué)生的分析能力,屬于基礎(chǔ)題.16、【解析】,;由正弦定理,得,解得.考點:正弦定理.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

計算出由三點共線解出即可.【詳解】解:,∵三點共線,∴,∴【點睛】本題考查3點共線的向量表示,屬于基礎(chǔ)題.18、(1);(2)當(dāng)時,在上的投影為;當(dāng)時,在上的投影為.【解析】

(1)由已知條件,結(jié)合正弦定理,求得,即可求得C的大小;(2)由已知條件,結(jié)合三角形的面積公式及余弦定理,求得的值,再由向量的數(shù)量積的運算,即可求解.【詳解】(1)因為,由正弦定理知,即,又,所以,所以,在中,,所以,又,所以;(2)在中,由余弦定理得,由,即,因此,所以,解得或,當(dāng)時,在上的投影為;當(dāng)時,在上的投影為.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時,要抓住題設(shè)條件和利用某個定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.19、(1);(2).【解析】試題分析:(1)根據(jù)已知條件及余弦定理可求得的值,再由同角三角函數(shù)基本關(guān)系式可求得的值.因為,所以,由兩角和的正弦公式可將其化簡變形,可求得與的關(guān)系式,從而可得.(2)根據(jù)余弦定理和三角形面積均可得的關(guān)系式.從而可解得的值.試題解析:,,,.(1),,,,.(2),,,①,∴由余弦定理可得,,②,∴聯(lián)立①②可得.考點:1正弦定理;2余弦定理;3兩角和差公式.20、(1),;(2),.【解析】

(1)根據(jù)圖像得A=2,利用,求ω值,再利用時取到最大值可求φ,從而得到函數(shù)解析式,進而求得對稱軸方程;(2)由得,方程f(x)=2a﹣3有兩個不等實根轉(zhuǎn)為f(x)的圖象與直線y=2a﹣3有兩個不同的交點,從而可求得a的取值范圍,利用圖像的性質(zhì)可得的值.【詳解】(1)由圖知,,解得ω=2,f(x)=2sin(2x+φ),當(dāng)時,函數(shù)取得最大值,可得,即,,解得,又所以,故,令則,所以的對稱軸方程為;(2),所以方程有兩個不等實根時,的圖象與直線有兩個不同的交點,可得,當(dāng)時,,有,故.【點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論