版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年卓識(shí)教育深圳實(shí)驗(yàn)部高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若正實(shí)數(shù)x,y滿足不等式,則的取值范圍是()A. B. C. D.2.定義在R上的函數(shù)fx既是偶函數(shù)又是周期函數(shù),若fx的最小正周期是π,且當(dāng)x∈0,π2A.-12 B.32 C.3.設(shè)、滿足約束條件,則的最大值為()A. B.C. D.4.已知平面向量,,若,則實(shí)數(shù)()A.-2 B.-1 C. D.25.已知等差數(shù)列an的前n項(xiàng)和為18,若S3=1,aA.9 B.21 C.27 D.366.我國魏晉時(shí)期的數(shù)學(xué)家劉徽,創(chuàng)立了用圓內(nèi)接正多邊形面積無限逼近圓面積的方法,稱為“割圓術(shù)”,為圓周率的研究提供了科學(xué)的方法.在半徑為1的圓內(nèi)任取一點(diǎn),則該點(diǎn)取自圓內(nèi)接正十二邊形外的概率為A. B.C. D.7.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題中正確的是()A.若α∥β,mα,nβ,則m∥n B.若α⊥β,mα,則m⊥βC.若α⊥β,mα,nβ,則m⊥n D.若α∥β,mα,則m∥β8.若是等差數(shù)列,首項(xiàng),,,則使前n項(xiàng)和成立的最大正整數(shù)n=()A.2017 B.2018 C.4035 D.40349.若a<b,則下列不等式中正確的是()A.a(chǎn)2<b2 B. C.a(chǎn)2+b2>2ab D.a(chǎn)c2<bc210.?dāng)?shù)列中,,則數(shù)列的極限值()A.等于0 B.等于1 C.等于0或1 D.不存在二、填空題:本大題共6小題,每小題5分,共30分。11.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個(gè)周期的圖象,則f(1)=__________.12.在棱長均為2的三棱錐中,分別為上的中點(diǎn),為棱上的動(dòng)點(diǎn),則周長的最小值為________.13.不等式有解,則實(shí)數(shù)的取值范圍是______.14.若向量,,且,則實(shí)數(shù)______.15.英國物理學(xué)家和數(shù)學(xué)家艾薩克·牛頓(Isaacnewton,1643-1727年)曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型.現(xiàn)把一杯溫水放在空氣中冷卻,假設(shè)這杯水從開始冷卻,x分鐘后物體的溫度滿足:(其中…為自然對(duì)數(shù)的底數(shù)).則從開始冷卻,經(jīng)過5分鐘時(shí)間這杯水的溫度是________(單位:℃).16.已知,各項(xiàng)均為正數(shù)的數(shù)列滿足,,若,則的值是.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.的內(nèi)角的對(duì)邊分別為,已知.(1)求;(2)若為銳角三角形,且,求面積的取值范圍.18.如圖,在三棱錐中,垂直于平面,.求證:平面.19.已知數(shù)列滿足:,(1)求,的值;(2)求數(shù)列的通項(xiàng)公式;(3)設(shè),數(shù)列的前n項(xiàng)和,求證:20.已知公差為正數(shù)的等差數(shù)列,,且成等比數(shù)列.(1)求;(2)若,求數(shù)列的前項(xiàng)的和.21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)將函數(shù)的圖象向右平移個(gè)單位得到函數(shù)的圖象,若,求的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
試題分析:由正實(shí)數(shù)滿足不等式,得到如下圖陰影所示的區(qū)域:當(dāng)過點(diǎn)時(shí),,當(dāng)過點(diǎn)時(shí),,所以的取值范圍是.考點(diǎn):線性規(guī)劃問題.2、B【解析】分析:要求f(5π3),則必須用f(x)=詳解:∵f(x)的最小正周期是π∴f∵f(x)是偶函數(shù)∴f-π∵當(dāng)x∈[0,π2則f故選B點(diǎn)睛:本題是一道關(guān)于正弦函數(shù)的題目,掌握正弦函數(shù)的周期性是解題的關(guān)鍵,考查了函數(shù)的周期性和函數(shù)單調(diào)性的性質(zhì).3、C【解析】
作出不等式組所表示的可行域,平移直線,觀察直線在軸上的截距最大時(shí)對(duì)應(yīng)的最優(yōu)解,再將最優(yōu)解代入目標(biāo)函數(shù)可得出結(jié)果.【詳解】作出不等式組所表示的可行域如下圖中的陰影部分區(qū)域表示:聯(lián)立,得,可得點(diǎn)的坐標(biāo)為.平移直線,當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時(shí),直線在軸上的截距最大,此時(shí)取最大值,即,故選:C.【點(diǎn)睛】本題考查簡單線性規(guī)劃問題,一般作出可行域,利用平移直線結(jié)合在坐標(biāo)軸上的截距取最值來取得,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.4、A【解析】
由題意,則,再由數(shù)量積的坐標(biāo)表示公式即可得到關(guān)于的方程,解出它的值【詳解】由,,則,即解得:故選:A【點(diǎn)睛】本題考查數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系,向量的數(shù)量積坐標(biāo)表示,屬于基礎(chǔ)題.5、C【解析】
利用前n項(xiàng)和Sn的性質(zhì)可求n【詳解】因?yàn)镾3而a1所以6Snn【點(diǎn)睛】一般地,如果an為等差數(shù)列,Sn為其前(1)若m,n,p,q∈N*,m+n=p+q,則am(2)Sn=n(3)Sn=An(4)Sn6、D【解析】
由半徑為1的圓內(nèi)接正十二邊形,可分割為12個(gè)頂角為,腰為1的等腰三角形,求得十二邊形的面積,利用面積比的幾何概型,即可求解.【詳解】由題意,半徑為1的圓內(nèi)接正十二邊形,可分割為12個(gè)頂角為,腰為1的等腰三角形,所以該正十二邊形的面積為,由幾何概型的概率計(jì)算公式,可得所求概率,故選D.【點(diǎn)睛】本題主要考查了幾何概型的概率的計(jì)算問題,解決此類問題的步驟:求出滿足條件A的基本事件對(duì)應(yīng)的“幾何度量”,再求出總的基本事件對(duì)應(yīng)的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力.7、D【解析】
在中,與平行或異面;在中,與相交、平行或;在中,與相交、平行或異面;在中,由線面平行的性質(zhì)定理得.【詳解】由,是兩條不同的直線,,是兩個(gè)不同的平面,知:在中,若,,,則與平行或異面,故錯(cuò)誤;在中,若,,則與相交、平行或,故錯(cuò)誤;在中,若,,,則與相交、平行或異面,故錯(cuò)誤;在中,若,,則由線面平行的性質(zhì)定理得,故正確.故選.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.8、D【解析】
由等差數(shù)列的性質(zhì)可得,,由等差數(shù)列前項(xiàng)和公式可得則,,得解.【詳解】解:由是等差數(shù)列,又,所以,又首項(xiàng),,則,,則,,即使前n項(xiàng)和成立的最大正整數(shù),故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),重點(diǎn)考查了等差數(shù)列前項(xiàng)和公式,屬中檔題.9、C【解析】
利用特殊值對(duì)錯(cuò)誤選項(xiàng)進(jìn)行排除,然后證明正確的不等式.【詳解】取代入驗(yàn)證可知,A、D選項(xiàng)錯(cuò)誤;取代入驗(yàn)證可知,B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),由于,所以,即成立.故選:C【點(diǎn)睛】本小題主要考查不等式的性質(zhì),屬于基礎(chǔ)題.10、B【解析】
根據(jù)題意得到:時(shí),,再計(jì)算即可.【詳解】因?yàn)楫?dāng)時(shí),.所以.故選:B【點(diǎn)睛】本題主要考查數(shù)列的極限,解題時(shí)要注意公式的選取和應(yīng)用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】
由三角函數(shù)圖象,利用三角函數(shù)的性質(zhì),求得函數(shù)的解析式,即可求解的值,得到答案.【詳解】由三角函數(shù)圖象,可得,由,得,于是,又,即,解得,所以,則.【點(diǎn)睛】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式及其應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12、【解析】
易證明中,且周長為,其中為定值,故只需考慮的最小值即可.【詳解】由題,棱長均為2的三棱錐,故該三棱錐的四個(gè)面均為正三角形.又因?yàn)?故.故.且分別為上的中點(diǎn),故.故周長為.故只需求的最小值即可.易得當(dāng)時(shí)取得最小值為.故周長的最小值為.故答案為:【點(diǎn)睛】本題主要考查了立體幾何中的距離最值問題,需要根據(jù)題意找到定量以及變量的最值情況即可.屬于中檔題.13、【解析】
由參變量分離法可得知,由二倍角的余弦公式以及二次函數(shù)的基本性質(zhì)求出函數(shù)的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】不等式有解,等價(jià)于存在實(shí)數(shù),使得關(guān)于的不等式成立,故只需.令,,由二次函數(shù)的基本性質(zhì)可知,當(dāng)時(shí),該函數(shù)取得最小值,即,.因此,實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】本題考查不等式有解的問題,涉及二倍角余弦公式以及二次函數(shù)基本性質(zhì)的應(yīng)用,一般轉(zhuǎn)化為函數(shù)的最值來求解,考查計(jì)算能力,屬于中等題.14、【解析】
根據(jù),兩個(gè)向量平行的條件是建立等式,解之即可.【詳解】解:因?yàn)?,,且所以解得故答案為:【點(diǎn)睛】本題主要考查兩個(gè)向量坐標(biāo)形式的平行的充要條件,屬于基礎(chǔ)題.15、45【解析】
直接利用對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可,【詳解】.故答案為:45.【點(diǎn)睛】本題考查對(duì)數(shù)的運(yùn)算性質(zhì),考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
由題意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考點(diǎn):數(shù)列的遞推公式.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用正弦定理化簡題中等式,得到關(guān)于B的三角方程,最后根據(jù)A,B,C均為三角形內(nèi)角解得.(2)根據(jù)三角形面積公式,又根據(jù)正弦定理和得到關(guān)于的函數(shù),由于是銳角三角形,所以利用三個(gè)內(nèi)角都小于來計(jì)算的定義域,最后求解的值域.【詳解】(1)根據(jù)題意,由正弦定理得,因?yàn)?,故,消去得.,因?yàn)楣驶蛘?,而根?jù)題意,故不成立,所以,又因?yàn)椋氲?,所?(2)因?yàn)槭卿J角三角形,由(1)知,得到,故,解得.又應(yīng)用正弦定理,,由三角形面積公式有:.又因,故,故.故的取值范圍是【點(diǎn)睛】這道題考查了三角函數(shù)的基礎(chǔ)知識(shí),和正弦定理或者余弦定理的使用(此題也可以用余弦定理求解),最后考查是銳角三角形這個(gè)條件的利用.考查的很全面,是一道很好的考題.18、證明見解析【解析】
分析:由線面垂直的性質(zhì)可得,結(jié)合,利用線面垂直的判定定理可得平面.詳解:∵面,在面內(nèi),∴,又∵,,∴面.點(diǎn)睛:證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當(dāng)兩個(gè)平面垂直時(shí),在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面.19、(1);;(2)(3)見證明;【解析】
(1)令可求得;(2)在已知等式基礎(chǔ)上,用代得另一等式,然后相減,可求得,并檢驗(yàn)一下是否適合此表達(dá)式;(3)用裂項(xiàng)相消法求和.【詳解】解:(1)由已知得,∴(2)由,①得時(shí),,②①-②得∴,也適合此式,∴().(3)由(2)得,∴∴∵,∴∴【點(diǎn)睛】本題考查由數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.求通項(xiàng)公式時(shí)的方法與已知求的方法一樣,本題就相當(dāng)于已知數(shù)列的前項(xiàng)和,要求.注意首項(xiàng)求法的區(qū)別.20、(1);(2)【解析】
(1)直接利用等差數(shù)列的性質(zhì)的應(yīng)用求出數(shù)列的公差,進(jìn)一步求出數(shù)列的通項(xiàng)公式.(2)利用(1)的通項(xiàng)公式,進(jìn)一步利用錯(cuò)位相減法求出數(shù)列的和.【詳解】(1)設(shè)公差為,由,,成等比數(shù)列,得,結(jié)合,解得,或(舍去),∴.(2)∴,∴,①,②,由①②可得:∴.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,錯(cuò)位相減法在數(shù)列求和中的應(yīng)用,主要考察學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版施工現(xiàn)場安全評(píng)價(jià)與驗(yàn)收協(xié)議責(zé)任書3篇
- 2025版?zhèn)€人退股協(xié)議書:創(chuàng)業(yè)投資退出與收益確認(rèn)合同4篇
- 2025年全球及中國絕緣干式電力變壓器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025-2030全球光強(qiáng)度調(diào)制器行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球多相真空萃取機(jī)行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球太陽能商用EV充電車棚行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025年全球及中國紫外超快光纖激光器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2024年科普知識(shí)競賽試題庫及答案(共60題)
- 2025年度個(gè)人個(gè)人間環(huán)保技術(shù)研發(fā)借款協(xié)議4篇
- 2025年度個(gè)人住宅租賃定金支付與保障協(xié)議書2篇
- 2024-2025學(xué)年北京石景山區(qū)九年級(jí)初三(上)期末語文試卷(含答案)
- 第一章 整式的乘除 單元測試(含答案) 2024-2025學(xué)年北師大版數(shù)學(xué)七年級(jí)下冊
- 春節(jié)聯(lián)歡晚會(huì)節(jié)目單課件模板
- 中國高血壓防治指南(2024年修訂版)
- 糖尿病眼病患者血糖管理
- 抖音音樂推廣代運(yùn)營合同樣本
- 《春酒》琦君完整版
- 教育促進(jìn)會(huì)會(huì)長總結(jié)發(fā)言稿
- 北師大版(2024新版)七年級(jí)上冊數(shù)學(xué)第四章《基本平面圖形》測試卷(含答案解析)
- 心理調(diào)適教案調(diào)整心態(tài)積極應(yīng)對(duì)挑戰(zhàn)
- 小學(xué)數(shù)學(xué)6年級(jí)應(yīng)用題100道附答案(完整版)
評(píng)論
0/150
提交評(píng)論