山東省濟寧市實驗中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
山東省濟寧市實驗中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
山東省濟寧市實驗中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
山東省濟寧市實驗中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
山東省濟寧市實驗中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省濟寧市實驗中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最小正周期是A. B. C. D.2.在正方體中,為棱的中點,則異面直線與所成角的余弦值為()A. B. C. D.3.若在是減函數(shù),則的最大值是A. B. C. D.4.若數(shù)列滿足(,為常數(shù)),則稱數(shù)列為“調(diào)和數(shù)列”.已知數(shù)列為調(diào)和數(shù)列,且,則的最大值是()A.50 B.100 C.150 D.2005.函數(shù)(其中為自然對數(shù)的底數(shù))的圖象大致為()A. B. C. D.6.已知向量,,則向量在向量方向上的投影為()A. B. C.-1 D.17.已知向量=(2,tan),=(1,-1),∥,則=()A.2 B.-3 C.-1 D.-38.一組數(shù)平均數(shù)是,方差是,則另一組數(shù),的平均數(shù)和方差分別是()A. B.C. D.9.如果全集,,則()A. B. C. D.10.已知,,,是球球面上的四個點,平面,,,則該球的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在中,,是邊上一點,,則.12.在中,角所對的邊分別為,,則____13.方程組的增廣矩陣是________.14.若函數(shù),的最大值為,則的值是________.15.若直線與直線平行,則實數(shù)a的值是________.16.已知等比數(shù)列中,若,,則_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.將正弦曲線如何變換可以得到函數(shù)的圖像,請寫出變換過程,并畫出一個周期的閉區(qū)間的函數(shù)簡圖.18.在平面直角坐標(biāo)系中,為坐標(biāo)原點,三點滿足.(1)求證:三點共線;(2)已知的最小值為,求實數(shù)的值.19.如圖,在直三棱柱中,,二面角為直角,為的中點.(1)求證:平面平面;(2)求直線與平面所成的角.20.已知,(1)求;(2)求;(3)求21.如圖,三條直線型公路,,在點處交匯,其中與、與的夾角都為,在公路上取一點,且km,過鋪設(shè)一直線型的管道,其中點在上,點在上(,足夠長),設(shè)km,km.(1)求出,的關(guān)系式;(2)試確定,的位置,使得公路段與段的長度之和最?。?/p>

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

的最小正周期為,求解得到結(jié)果.【詳解】由解析式可知,最小正周期本題正確選項:【點睛】本題考查的性質(zhì),屬于基礎(chǔ)題.2、D【解析】

利用,得出異面直線與所成的角為,然后在中利用銳角三角函數(shù)求出.【詳解】如下圖所示,設(shè)正方體的棱長為,四邊形為正方形,所以,,所以,異面直線與所成的角為,在正方體中,平面,平面,,,,,在中,,,因此,異面直線與所成角的余弦值為,故選D.【點睛】本題考查異面直線所成角的計算,一般利用平移直線,選擇合適的三角形,利用銳角三角函數(shù)或余弦定理求解,考查推理能力與計算能力,屬于中等題.3、A【解析】

分析:先確定三角函數(shù)單調(diào)減區(qū)間,再根據(jù)集合包含關(guān)系確定的最大值.詳解:因為,所以由得因此,從而的最大值為,選A.點睛:函數(shù)的性質(zhì):(1).(2)周期(3)由求對稱軸,(4)由求增區(qū)間;由求減區(qū)間.4、B【解析】

根據(jù)調(diào)和數(shù)列定義知為等差數(shù)列,再由前20項的和為200知,最后根據(jù)基本不等式可求出的最大值?!驹斀狻恳驗閿?shù)列為調(diào)和數(shù)列,所以,即為等差數(shù)列又,又大于0所以【點睛】本題考查了新定義“調(diào)和數(shù)列”的性質(zhì)、等差數(shù)列的性質(zhì)及其前n項公式、基本不等式的性質(zhì),屬于難題。5、C【解析】

由題意,可知,即為奇函數(shù),排除,,又時,,可排除D,即可選出正確答案.【詳解】由題意,函數(shù)定義域為,且,即為奇函數(shù),排除,,當(dāng)時,,,即時,,可排除D,故選C.【點睛】本題考查了函數(shù)圖象的識別,考查了函數(shù)奇偶性的運用,屬于中檔題.6、A【解析】

根據(jù)投影的定義和向量的數(shù)量積求解即可.【詳解】解:∵,,∴向量在向量方向上的投影,故選:A.【點睛】本題主要考查向量的數(shù)量積的定義及其坐標(biāo)運算,屬于基礎(chǔ)題.7、B【解析】

通過向量平行得到的值,再利用和差公式計算【詳解】向量=(2,tan),=(1,-1),∥故答案選B【點睛】本題考查了向量的平行,三角函數(shù)和差公式,意在考查學(xué)生的計算能力.8、B【解析】

直接利用公式:平均值方差為,則的平均值和方差為:得到答案.【詳解】平均數(shù)是,方差是,的平均數(shù)為:方差為:故答案選B【點睛】本題考查了平均數(shù)和方差的計算:平均數(shù)是,方差是,則的平均值和方差為:.9、C【解析】

首先確定集合U,然后求解補集即可.【詳解】由題意可得:,結(jié)合補集的定義可知.本題選擇C選項.【點睛】本題主要考查集合的表示方法,補集的定義等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.10、B【解析】

根據(jù)截面法,作出球心O與外接圓圓心所在截面,利用平行四邊形和勾股定理可求得球半徑,從而得到結(jié)果.【詳解】如圖,的外接圓圓心E為BC的中點,設(shè)球心為O,連接OE,OP,OA,D為PA的中點,連接OD.根據(jù)直角三角形的性質(zhì)可得,且平面,則//,由為等腰三角形可得,又,所以//,則四邊形ODAE是矩形,所以=,而,中,根據(jù)勾股定理可得,所以該球的表面積為.所以本題答案為B.【點睛】本題考查求三棱錐外接球的表面積問題,幾何體的外接球、內(nèi)切球問題,關(guān)鍵是球心位置的確定,必要時需把球的半徑放置在可解的幾何圖形中,如果球心的位置不易確定,則可以把該幾何體補成規(guī)則的幾何體,便于球心位置和球的半徑的確定.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由圖及題意得

=

=(

)(

)=

+

=

=

.12、【解析】

利用正弦定理將邊角關(guān)系式中的邊都化成角,再結(jié)合兩角和差公式進行整理,從而得到.【詳解】由正弦定理可得:即:本題正確結(jié)果:【點睛】本題考查李用正弦定理進行邊角關(guān)系式的化簡問題,屬于常規(guī)題.13、【解析】

理解方程增廣矩陣的涵義,即可由二元線性方程組,寫出增廣矩陣.【詳解】由題意,方程組的增廣矩陣為其系數(shù)以及常數(shù)項構(gòu)成的矩陣,故方程組的增廣矩陣是.故答案為:【點睛】本題考查了二元一次方程組與增廣矩陣的關(guān)系,需理解增廣矩陣的涵義,屬于基礎(chǔ)題.14、【解析】

利用兩角差的正弦公式化簡函數(shù)的解析式為,由的范圍可得的范圍,根據(jù)最大值可得的值.【詳解】∵函數(shù)=2()=,∵,∴∈[,],又∵的最大值為,所以的最大值為,即=,解得.故答案為【點睛】本題主要考查兩角差的正弦公式的應(yīng)用,正弦函數(shù)的定義域和最值,屬于基礎(chǔ)題.15、0【解析】

解方程即得解.【詳解】因為直線與直線平行,所以,所以或.當(dāng)時,兩直線重合,所以舍去.當(dāng)時,兩直線平行,滿足題意.故答案為:【點睛】本題主要考查兩直線平行的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.16、4【解析】

根據(jù)等比數(shù)列的等積求解即可.【詳解】因為,故.又,故.故答案為:4【點睛】本題主要考查了等比數(shù)列等積性的運用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、答案見解析【解析】

利用函數(shù)函數(shù)的圖像變換規(guī)律和五點作圖法可解.【詳解】由函數(shù)的圖像上的每一點保持縱坐標(biāo)不變,橫坐標(biāo)擴大為原來的2倍,得到函數(shù)的圖像,

再將函數(shù)的圖像向左平移個單位,得到函數(shù)的圖像.

然后再把函數(shù)的圖像上每一個點的橫坐標(biāo)保持不變,縱坐標(biāo)擴大為原來的2倍,得到函數(shù)的圖像.作函數(shù)的圖像列表得0100函數(shù)圖像為【點睛】本題考查函數(shù)的圖像變換的過程敘述和作出函數(shù)的一個周期的簡圖,屬于基礎(chǔ)題.18、(1)證明過程見解析;(2)【解析】試題分析:(1)只需證得即可。(2)由題意可求得的解析式,利用換元法轉(zhuǎn)換成,討論的單調(diào)性,可知其在上為單調(diào)減函數(shù),得可解得的值。(1)證明:三點共線.(2),,令,其對稱軸方程為在上是減函數(shù),。點睛:證明三點共線的方法有兩種:一、求出其中兩點所在直線方程,驗證第三點滿足直線方程即可;二、任取兩點構(gòu)造兩個向量,證明兩向量共線即可。在考試中經(jīng)常采用第二種方法,便于計算。證明四點共線一般采用第一種方法。19、(1)證明見詳解;(2).【解析】

(1)先證明平面,再推出面面垂直;(2)由(1)可知即為所求,在三角形中求角即可.【詳解】(1)證明:因為,所以;又為的中點,所以.在直三棱柱中,平面.又因為平面中,所以,因為,所以平面,又因為平面,所以平面平面.(2)由(1)知為在平面內(nèi)的射影,所以為直線與平面所成的角,設(shè),則,在中,,在中,,又,得,因此直線與平面所成的角為.【點睛】本題第一問考查由線面垂直證明面面垂直,第二問考查線面角的求解,屬綜合基礎(chǔ)題.20、(1);(2);(3)【解析】

利用正弦的二倍角公式,余弦和正切的兩角和公式計算即可得到答案.【詳解】因為,,所以.(1);(2);(3)【點睛】本題考查正弦的二倍角公式,余弦和正切的兩角和公式的應(yīng)用,屬于簡單題.21、(1)(2)當(dāng)時,公路段與段的總長度最小【解析】

(1)(法一)觀察圖形可得,由此根據(jù)三角形的面積公式,建立方程,化簡即可得到的關(guān)系式;(法二)以點為坐標(biāo)原點,所在的直線為軸建立平面直角坐標(biāo)系,找到各點坐標(biāo),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論