版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省常州市前黃國(guó)際中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知直線與圓交于M,N兩點(diǎn),若,則k的值為()A. B. C. D.2.將所有的正奇數(shù)按以下規(guī)律分組,第一組:1;第二組:3,5,7;第三組:9,11,13,15,17;…表示n是第i組的第j個(gè)數(shù),例如,,則()A. B. C. D.3.若向量,,則在方向上的投影為()A.-2 B.2 C. D.4.直線l:與圓C:交于A,B兩點(diǎn),則當(dāng)弦AB最短時(shí)直線l的方程為A. B.C. D.5.若三角形三邊的長(zhǎng)度為連續(xù)的三個(gè)自然數(shù),則稱(chēng)這樣的三角形為“連續(xù)整邊三角形”.下列說(shuō)法正確的是()A.“連續(xù)整邊三角形”只能是銳角三角形B.“連續(xù)整邊三角形”不可能是鈍角三角形C.若“連續(xù)整邊三角形”中最大角是最小角的2倍,則這樣的三角形有且僅有1個(gè)D.若“連續(xù)整邊三角形”中最大角是最小角的2倍,則這樣的三角形可能有2個(gè)6.我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”,如.在不超過(guò)30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于30的概率是A. B. C. D.7.某幾何體的三視圖如圖所示,則它的體積是()A.B.C.D.8.已知數(shù)列的前4項(xiàng)依次為,1,,,則該數(shù)列的一個(gè)通項(xiàng)公式可以是()A. B.C. D.9.古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有女子善織,日自倍,五日織五尺,問(wèn)日織幾何?”意思是:“一女子善于織布,每天織布都是前一天的2倍,已知她5天共織布5尺,問(wèn)這女子每天分別織布多少?”根據(jù)上題的已知條件,若要使織布的總尺數(shù)不少于30,該女子所需的天數(shù)至少為()A.7 B.8 C.9 D.1010.在數(shù)列中,,且數(shù)列是等比數(shù)列,其公比,則數(shù)列的最大項(xiàng)等于()A. B. C.或 D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)是數(shù)列的前項(xiàng)和,且,,則__________.12.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為.13.已知x,y=R+,且滿足x2y6,若xy的最大值與最小值分別為M和m,M+m=_____.14.過(guò)點(diǎn)且在坐標(biāo)軸上的截距相等的直線的一般式方程是________.15.在棱長(zhǎng)均為2的三棱錐中,分別為上的中點(diǎn),為棱上的動(dòng)點(diǎn),則周長(zhǎng)的最小值為_(kāi)_______.16.如圖,長(zhǎng)方體中,,,,與相交于點(diǎn),則點(diǎn)的坐標(biāo)為_(kāi)_____________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知等比數(shù)列的公比,且的等差中項(xiàng)為10,.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.18.已知(1)求的值;(2)求的最小值以及取得最小值時(shí)的值19.已知函數(shù).(1)求的最小正周期.(2)求在區(qū)間上的最小值.20.已知數(shù)列滿足關(guān)系式,.(1)用表示,,;(2)根據(jù)上面的結(jié)果猜想用和表示的表達(dá)式,并用數(shù)學(xué)歸納法證之.21.在平面直角坐標(biāo)系中,直線截以原點(diǎn)為圓心的圓所得的弦長(zhǎng)為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點(diǎn),當(dāng)長(zhǎng)最小時(shí),求直線的方程;(3)設(shè)是圓上任意兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),若直線分別交軸于點(diǎn)和,問(wèn)是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
先求得圓心到直線的距離,再根據(jù)圓的弦長(zhǎng)公式求解.【詳解】圓心到直線的距離為:由圓的弦長(zhǎng)公式:得解得故選:C【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、C【解析】
由等差數(shù)列求和公式及進(jìn)行簡(jiǎn)單的合情推理可得:2019為第1010個(gè)正奇數(shù),設(shè)2019在第n組中,則有,,解得:n=32,又前31組共有961個(gè)奇數(shù),則2019為第32組的第1010-961=49個(gè)數(shù),得解.【詳解】由已知有第n組有2n-1個(gè)連續(xù)的奇數(shù),則前n組共有個(gè)連續(xù)的奇數(shù),又2019為第1010個(gè)正奇數(shù),設(shè)2019在第n組中,則有,,解得:n=32,又前31組共有961個(gè)奇數(shù),則2019為第32組的第1010-961=49個(gè)數(shù),即2019=(32,49),故選:C.【點(diǎn)睛】本題考查歸納推理,解題的關(guān)鍵是根據(jù)等差數(shù)列求和公式分析出規(guī)律,再結(jié)合數(shù)列的性質(zhì)求解,屬于中等題.3、A【解析】向量,,所以,||=5,所以在方向上的投影為=-2故選A4、A【解析】
先求出直線經(jīng)過(guò)的定點(diǎn),再求出弦AB最短時(shí)直線l的方程.【詳解】由題得,所以直線l過(guò)定點(diǎn)P.當(dāng)CP⊥l時(shí),弦AB最短.由題得,所以.所以直線l的方程為.故選:A【點(diǎn)睛】本題主要考查直線過(guò)定點(diǎn)問(wèn)題,考查直線方程的求法,考查直線和圓的位置關(guān)系,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.5、C【解析】
舉例三邊長(zhǎng)分別是的三角形是鈍角三角形,否定A,B,通過(guò)計(jì)算求出最大角是最小角的二倍的三角形,從而可確定C、D中哪個(gè)正確哪個(gè)錯(cuò)誤.【詳解】三邊長(zhǎng)分別是的三角形,最大角為,則,是鈍角,三角形是鈍角三角形,A,B都錯(cuò),如圖中,,,是的平分線,則,∴,,∴,,又由是的平分線,得,∴,解得,∴“連續(xù)整邊三角形”中最大角是最小角的2倍的三角形只有一個(gè),邊長(zhǎng)分別為4,5,6,C正確,D錯(cuò)誤.故選D.【點(diǎn)睛】本題考查余弦定理,考查命題的真假判斷,數(shù)學(xué)上要說(shuō)明一個(gè)命題是假命題,只要舉一個(gè)反例即可,而要說(shuō)明它是真命題,則要進(jìn)行證明.6、C【解析】分析:先確定不超過(guò)30的素?cái)?shù),再確定兩個(gè)不同的數(shù)的和等于30的取法,最后根據(jù)古典概型概率公式求概率.詳解:不超過(guò)30的素?cái)?shù)有2,3,5,7,11,13,17,19,23,29,共10個(gè),隨機(jī)選取兩個(gè)不同的數(shù),共有種方法,因?yàn)?,所以隨機(jī)選取兩個(gè)不同的數(shù),其和等于30的有3種方法,故概率為,選C.點(diǎn)睛:古典概型中基本事件數(shù)的探求方法:(1)列舉法.(2)樹(shù)狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本事件的探求.對(duì)于基本事件有“有序”與“無(wú)序”區(qū)別的題目,常采用樹(shù)狀圖法.(3)列表法:適用于多元素基本事件的求解問(wèn)題,通過(guò)列表把復(fù)雜的題目簡(jiǎn)單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素?cái)?shù)目較多的題目.7、A【解析】根據(jù)已知的三視圖想象出空間幾何體,然后由幾何體的組成和有關(guān)幾何體體積公式進(jìn)行計(jì)算.由幾何體的三視圖可知幾何體為一個(gè)組合體,即一個(gè)正方體中間去掉一個(gè)圓錐體,所以它的體積是.8、A【解析】
根據(jù)各選擇項(xiàng)求出數(shù)列的首項(xiàng),第二項(xiàng),用排除法確定.【詳解】可用排除法,由數(shù)列項(xiàng)的正負(fù)可排除B,D,再看項(xiàng)的絕對(duì)值,在C中不合題意,排除C,只有A.可選.故選:A.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)公式,已知數(shù)列的前幾項(xiàng),選擇一個(gè)通項(xiàng)公式,比較方便,可以利用通項(xiàng)公式求出數(shù)列的前幾項(xiàng),把不合的排除即得.9、B【解析】試題分析:設(shè)該女子第一天織布尺,則,解得,所以前天織布的尺數(shù)為,由,得,解得的最小值為,故選B.考點(diǎn):等比數(shù)列的應(yīng)用.10、C【解析】
在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,利用等比數(shù)列的通項(xiàng)公式可得:.可得,利用二次函數(shù)的單調(diào)性即可得出.【詳解】在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,.,.由或8時(shí),,或9時(shí),,數(shù)列的最大項(xiàng)等于或.故選:C.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式、累乘法、二次函數(shù)的單調(diào)性,考查推理能力與計(jì)算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】原式為,整理為:,即,即數(shù)列是以-1為首項(xiàng),-1為公差的等差的數(shù)列,所以,即.【點(diǎn)睛】這類(lèi)型題使用的公式是,一般條件是,若是消,就需當(dāng)時(shí)構(gòu)造,兩式相減,再變形求解;若是消,就需在原式將變形為:,再利用遞推求解通項(xiàng)公式.12、【解析】該幾何體是由兩個(gè)高為1的圓錐與一個(gè)高為2的圓柱組合而成,所以該幾何體的體積為.考點(diǎn):本題主要考查三視圖及幾何體體積的計(jì)算.13、【解析】
設(shè),則,可得,然后利用基本不等式得到關(guān)于的一元二次方程解方程可得的最大值和最小值,進(jìn)而得到結(jié)論.【詳解】∵x,y=R+,設(shè),則,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值與最小值分別為M和m,∴M,m,∴M+m.【點(diǎn)睛】本題考查了基本不等式的應(yīng)用和一元二次不等式的解法,考查了轉(zhuǎn)化思想和運(yùn)算推理能力,屬于中檔題.14、或【解析】
討論直線過(guò)原點(diǎn)和直線不過(guò)原點(diǎn)兩種情況,分別計(jì)算得到答案.【詳解】當(dāng)直線過(guò)原點(diǎn)時(shí),設(shè),過(guò)點(diǎn),則,即;當(dāng)直線不過(guò)原點(diǎn)時(shí),設(shè),過(guò)點(diǎn),則,即;綜上所述:直線方程為或.故答案為:或.【點(diǎn)睛】本題考查了直線方程,漏解是容易發(fā)生的錯(cuò)誤.15、【解析】
易證明中,且周長(zhǎng)為,其中為定值,故只需考慮的最小值即可.【詳解】由題,棱長(zhǎng)均為2的三棱錐,故該三棱錐的四個(gè)面均為正三角形.又因?yàn)?故.故.且分別為上的中點(diǎn),故.故周長(zhǎng)為.故只需求的最小值即可.易得當(dāng)時(shí)取得最小值為.故周長(zhǎng)的最小值為.故答案為:【點(diǎn)睛】本題主要考查了立體幾何中的距離最值問(wèn)題,需要根據(jù)題意找到定量以及變量的最值情況即可.屬于中檔題.16、【解析】
易知是的中點(diǎn),求出的坐標(biāo),根據(jù)中點(diǎn)坐標(biāo)公式求解.【詳解】可知,,由中點(diǎn)坐標(biāo)公式得的坐標(biāo)公式,即【點(diǎn)睛】本題考查空間直角坐標(biāo)系和中點(diǎn)坐標(biāo)公式,空間直角坐標(biāo)的讀取是易錯(cuò)點(diǎn).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ).(Ⅱ)【解析】
(Ⅰ)利用已知條件求出首項(xiàng)與公差,然后根據(jù)等比數(shù)列的通項(xiàng)公式,即可求出結(jié)果;(Ⅱ)先求出,再利用錯(cuò)位相減法求數(shù)列的前項(xiàng)和.【詳解】解析:(Ⅰ)由題意可得:,∴∵,∴,∴數(shù)列的通項(xiàng)公式為.(Ⅱ),∴上述兩式相減可得∴=【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式的求法,以及利用錯(cuò)位相減法求和,考查計(jì)算能力,屬于基礎(chǔ)題.18、(1)(2)當(dāng)時(shí),函數(shù)取得最小值.【解析】
(1)將代入函數(shù)計(jì)算得到答案.(2)根據(jù)降次公式和輔助角公式化簡(jiǎn)函數(shù)為,當(dāng)時(shí)取最小值.【詳解】(1)(2)由可得,故函數(shù)的最小值為,當(dāng)時(shí)取得最小值.【點(diǎn)睛】本題考查了三角函數(shù)的計(jì)算,三角函數(shù)的最小值,將三角函數(shù)化簡(jiǎn)為標(biāo)準(zhǔn)形式是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力.19、(1);(2).【解析】試題分析:本題主要考查倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.(Ⅰ)先利用倍角公式將降冪,再利用兩角和的正弦公式將化簡(jiǎn),使之化簡(jiǎn)成的形式,最后利用計(jì)算函數(shù)的最小正周期;(Ⅱ)將的取值范圍代入,先求出的范圍,再數(shù)形結(jié)合得到三角函數(shù)的最小值.試題解析:(Ⅰ)∵,∴的最小正周期為.(Ⅱ)∵,∴.當(dāng),即時(shí),取得最小值.∴在區(qū)間上的最小值為.考點(diǎn):倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值.20、(1),,(2)猜想:,證明見(jiàn)解析【解析】
(1)根據(jù)遞推關(guān)系依次代入求解,(2)根據(jù)規(guī)律猜想,再利用數(shù)學(xué)歸納法證明【詳解】解:(1),∴,,;(2)猜想:.證明:當(dāng)時(shí),結(jié)論顯然成立;假設(shè)時(shí)結(jié)論成立,即,則時(shí),,即時(shí)結(jié)論成立.綜上,對(duì)時(shí)結(jié)論成立.【點(diǎn)睛】本題考查歸納猜想與數(shù)學(xué)歸納法證明,考查基本分析論證能力,屬基礎(chǔ)題21、(1);(1);(3)定值為.【解析】試
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞務(wù)供應(yīng)授權(quán)收款協(xié)議
- 2024年食堂承包協(xié)議范文
- 2024企業(yè)勞動(dòng)合同書(shū)樣本
- 合作開(kāi)發(fā)房產(chǎn)合同文本
- 2024年商場(chǎng)裝修合同的范本
- 建筑項(xiàng)目勞務(wù)分包合同格式
- 投資股權(quán)合同格式模板
- 個(gè)人股權(quán)出售合同
- 2024合作伙伴協(xié)議范本
- 2024年消防通風(fēng)承包合同協(xié)議書(shū)范本
- 運(yùn)籌學(xué)課件-運(yùn)籌學(xué)完整課件(1-8章)
- 2024年中國(guó)出版集團(tuán)公司招聘筆試參考題庫(kù)含答案解析
- 學(xué)校教育促進(jìn)學(xué)生的情感管理和社交技能培訓(xùn)課件
- 《有趣的符號(hào)》幼兒園課件
- 城軌行車(chē)組織-聯(lián)鎖故障時(shí)的列車(chē)運(yùn)行組織
- 2023年體育單招數(shù)學(xué)真題及答案
- 儲(chǔ)能技術(shù)在交通領(lǐng)域的應(yīng)用
- 視網(wǎng)膜動(dòng)脈阻塞治療及護(hù)理
- 特種設(shè)備安全風(fēng)險(xiǎn)管控清單
- 品管圈QCC成果匯報(bào)提高母乳喂養(yǎng)成功率課件
- 滬科版八年級(jí)數(shù)學(xué)(上)期中考試基礎(chǔ)知識(shí)總結(jié)
評(píng)論
0/150
提交評(píng)論