版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學海大聯(lián)考2024屆高一下數(shù)學期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.5 B.8 C.13 D.212.下列函數(shù)所具有的性質(zhì),一定成立的是()A. B.C. D.3.某協(xié)會有200名會員,現(xiàn)要從中抽取40名會員作樣本,采用系統(tǒng)抽樣法等間距抽取樣本,將全體會員隨機按1~200編號,并按編號順序平均分為40組(1-5號,6-10號,…,196-200號).若第5組抽出的號碼為22,則第1組至第3組抽出的號碼依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,124.在中,內(nèi)角,,的對邊分別為,,.若,則的形狀是A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定5.若將函數(shù)的圖象向右平移個單位后,所得圖象對應(yīng)的函數(shù)為()A. B. C. D.6.已知集合,集合為整數(shù)集,則()A. B. C. D.7.如圖,函數(shù)與坐標軸的三個交點P,Q,R滿足,,M為QR的中點,,則A的值為()A. B. C. D.8.在等差數(shù)列中,若公差,則()A. B. C. D.9.從甲、乙、丙、丁四人中隨機選出人參加志愿活動,則甲被選中的概率為()A. B. C. D.10.已知函數(shù)在區(qū)間上恒成立,則實數(shù)的最小值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知中,,且,則面積的最大值為__________.12.已知,且,則的取值范圍是____________.13.已知直線:與圓交于,兩點,過,分別作的垂線與軸交于,兩點,若,則__________.14.半徑為的圓上,弧長為的弧所對圓心角的弧度數(shù)為________.15.不等式的解集為_______________.16.如圖,正方體的棱長為,動點在對角線上,過點作垂直于的平面,記這樣得到的截面多邊形(含三角形)的周長為,設(shè),則當時,函數(shù)的值域__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某企業(yè)生產(chǎn),兩種產(chǎn)品,根據(jù)市場調(diào)查與預測,產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,(注:利潤與投資單位:萬元)(1)分別將,兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系,并寫出它們的函數(shù)關(guān)系式;(2)該企業(yè)已籌集到10萬元資金,全部投入到,兩種產(chǎn)品的生產(chǎn),怎樣分配資金,才能使企業(yè)獲得最大利潤,其最大利潤約為多少萬元(精確到1萬元).18.已知的內(nèi)角A,B,C所對的邊分別為a,b,c,其外接圓的面積為,且.(1)求邊長c;(2)若的面積為,求的周長.19.如圖,在三棱柱中(底面為正三角形),平面,,,,是邊的中點.(1)證明:平面平面.(2)求點到平面的距離.20.在中,角A,B,C的對邊分別為a,b,c,,且.(1)求A;(2)求面積的最大值.21.如圖,在三棱錐中,分別為棱上的中點.(1)求證:平面;(2)若平面,求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
通過程序一步步分析得到結(jié)果,從而得到輸出結(jié)果.【詳解】開始:,執(zhí)行程序:;;;;,執(zhí)行“否”,輸出的值為13,故選C.【點睛】本題主要考查算法框圖的輸出結(jié)果,意在考查學生的分析能力及計算能力,難度不大.2、B【解析】
結(jié)合反三角函數(shù)的性質(zhì),逐項判定,即可求解.【詳解】由題意,對于A中,令,則,所以不正確;對于C中,根據(jù)反正弦函數(shù)的性質(zhì),可得,所以是錯誤的;對于D中,函數(shù)當時,則滿足,所以不正確,故選:B.【點睛】本題主要考查了反三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記反三角函數(shù)的性質(zhì),逐項判定是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、B【解析】
根據(jù)系統(tǒng)抽樣原理求出抽樣間距,再根據(jù)第5組抽出的號碼求出第1組抽出的號碼,即可得出第2組、第3組抽取的號碼.【詳解】根據(jù)系統(tǒng)抽樣原理知,抽樣間距為200÷40=5,
當?shù)?組抽出的號碼為22時,即22=4×5+2,
所以第1組至第3組抽出的號碼依次是2,7,1.
故選:B.【點睛】本題考查了系統(tǒng)抽樣方法的應(yīng)用問題,是基礎(chǔ)題.4、C【解析】
由正弦定理可推得,再由余弦定理計算最大邊的余弦值即可判斷三角形形狀.【詳解】因為,所以,設(shè),,,則角為的最大角,由余弦定理可得,即,故是鈍角三角形.【點睛】本題考查用正弦定理和余弦定理解三角形,屬于基礎(chǔ)題.5、B【解析】
根據(jù)正弦型函數(shù)的圖象平移規(guī)律計算即可.【詳解】.故選:B.【點睛】本題考查三角函數(shù)圖象的平移變化,考查對基本知識的理解和掌握,屬于基礎(chǔ)題.6、A【解析】試題分析:,選A.【考點定位】集合的基本運算.7、D【解析】
用周期表示出點坐標,從而又可得點坐標,再求出點坐標后利用求得,得.【詳解】記函數(shù)的周期,則,因為,∴,是中點,則,∴,解得,∴,由得,∵,∴,,,∴,故選:D.【點睛】本題考查求三角函數(shù)的解析式,掌握正弦函數(shù)的圖象與性質(zhì)是解題關(guān)鍵.8、B【解析】
根據(jù)等差數(shù)列的通項公式求解即可得到結(jié)果.【詳解】∵等差數(shù)列中,,公差,∴.故選B.【點睛】等差數(shù)列中的計算問題都可轉(zhuǎn)為基本量(首項和公差)來處理,運用公式時要注意項和項數(shù)的對應(yīng)關(guān)系.本題也可求出等差數(shù)列的通項公式后再求出的值,屬于簡單題.9、C【解析】分析:用列舉法得出甲、乙、丙、丁四人中隨機選出人參加志愿活動的事件數(shù),從而可求甲被選中的概率.詳解:從甲、乙、丙、丁四人中隨機選出人參加志愿活動,包括:甲乙;甲丙;甲丁;乙丙;乙??;丙丁6種情況,甲被選中的概率為.故選C.點睛:本題考查用列舉法求基本事件的概率,解題的關(guān)鍵是確定基本事件,屬于基礎(chǔ)題.10、D【解析】
直接利用三角函數(shù)關(guān)系式的恒等變換,把函數(shù)的關(guān)系式變形為正弦型函數(shù),進一步利用恒成立問題的應(yīng)用求出結(jié)果.【詳解】函數(shù),由因為,所以,即,當時,函數(shù)的最大值為,由于在區(qū)間上恒成立,故,實數(shù)的最小值是.故選:D【點睛】本題考查了兩角和的余弦公式、輔助角公式以及三角函數(shù)的最值,需熟記公式與三角函數(shù)的性質(zhì),同時考查了不等式恒成立問題,屬于基出題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先利用正弦定理求出c=2,分析得到當點在的垂直平分線上時,邊上的高最大,的面積最大,利用余弦定理求出,最后求面積的最大值.【詳解】由可得,由正弦定理,得,故,當點在的垂直平分線上時,邊上的高最大,的面積最大,此時.由余弦定理知,,即,故面積的最大值為.故答案為【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.12、【解析】
利用正弦函數(shù)的定義域求得值域,即的范圍,再根據(jù)反余弦函數(shù)的定義可求得的取值范圍.【詳解】因為且,所以,則根據(jù)反余弦函數(shù)的定義可得,則的取值范圍是.故答案為:【點睛】本題考查了正弦函數(shù)的定義域和值域,考查了反余弦函數(shù)的定義,屬于基礎(chǔ)題.13、4【解析】
由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長可得答案.【詳解】因為,且圓的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識知在梯形中,.故答案為4【點睛】解決直線與圓的綜合問題時,一方面,要注意運用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識使問題較為簡捷地得到解決.14、【解析】
根據(jù)弧長公式即可求解.【詳解】由弧長公式可得故答案為:【點睛】本題主要考查了弧長公式的應(yīng)用,屬于基礎(chǔ)題.15、【解析】.16、【解析】
根據(jù)已知條件,所得截面可能是三角形,也可能是六邊形,分別求出三角形與六邊形周長的取值情況,即可得到函數(shù)的值域.【詳解】如圖:∵正方體的棱長為,∴正方體的對角線長為6,∵(i)當或時,三角形的周長最小.設(shè)截面正三角形的邊長為,由等體積法得:∴∴,(ii)或時,三角形的周長最大,截面正三角形的邊長為,∴(iii)當時,截面六邊形的周長都為∴∴當時,函數(shù)的值域為.【點睛】本題考查多面體表面的截面問題和線面垂直,關(guān)鍵在于結(jié)合圖形分析截面的三種情況,進而得出與截面邊長的關(guān)系.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為,為;(2)產(chǎn)品投入3.75萬元,產(chǎn)品投入6.25萬元,最大利潤為4萬元【解析】
(1)根據(jù)題意給出的函數(shù)模型,設(shè);代入圖中數(shù)據(jù)求得既得,注意自變量;(2)設(shè)產(chǎn)品投入萬元,則產(chǎn)品投入萬元,設(shè)企業(yè)利潤為萬元.,列出利潤函數(shù)為,用換元法,設(shè),變化為二次函數(shù)可求得利潤的最大值.【詳解】解:(1)設(shè)投資為萬元,產(chǎn)品的利潤為萬元,產(chǎn)品的利潤為萬元由題設(shè)知;由圖1知,由圖2知,則,.(2)設(shè)產(chǎn)品投入萬元,則產(chǎn)品投入萬元,設(shè)企業(yè)利潤為萬元.,,令,則則當時,,此時所以當產(chǎn)品投入3.75萬元,產(chǎn)品投入6.25萬元,企業(yè)獲得最大利潤為4萬元.【點睛】本題考查函數(shù)的應(yīng)用,在已知函數(shù)模型時直接設(shè)出函數(shù)表達式,代入已知條件可得函數(shù)解析式.18、(1)(2)【解析】
(1)計算得到,,利用正弦定理計算得到答案.(2)根據(jù)余弦定理得到,根據(jù)面積公式得到,得到答案.【詳解】(1),.,.,,.(2)由余弦定理得:.,,,,.的周長為.【點睛】本題考查了正弦定理,余弦定理和面積公式,意在考查學生的計算能力.19、(1)見解析(2)【解析】
(1)由,為的中點,可得,又平面,可得,即可證明平面,結(jié)合平面,即可證明平面平面;(2)設(shè)點到平面的距離為,由等體積法,,即,求解即可.【詳解】(1)證明:,為的中點,.又平面,平面,.又,平面.又平面,平面平面.(2)解:由(1)知,平面,平面,.,,,.設(shè)點到平面的距離為,由,得,即,,即點到平面的距離為.【點睛】本題考查了面面垂直的證明,考查了利用等體積法求點到面的距離,考查了學生的空間想象能力,屬于中檔題.20、(1);(2)【解析】
(1)由題目條件a=1,可以將(1+b)(sinA-sinB)=(c-b)sinC中的1換成a,達到齊次化的目的,再用正余弦定理解決;(2)已知∠A,要求△ABC的面積,可用公式,因此把問題轉(zhuǎn)化為求bc的最大值.【詳解】(1)因為(1+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因為b2+c2-a2=bc,所以bc=b2+c2-1≥2bc-1,可得bc≤1;所以,當且僅當b=c=1時,取等號.∴面積的最大值.【點睛】本題考查正弦定理解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國快速連接器數(shù)據(jù)監(jiān)測研究報告
- 2025年中國溫度風爐市場調(diào)查研究報告
- 2025年度草捆生物質(zhì)燃料供應(yīng)合同3篇
- 2025年度綠色生態(tài)農(nóng)資銷售合作合同范本2篇
- 2025年農(nóng)業(yè)觀光休閑果園生態(tài)農(nóng)業(yè)技術(shù)研發(fā)與應(yīng)用合同4篇
- 三方債務(wù)合同:2024年企業(yè)互保案例版
- 二零二五年度暖氣設(shè)備生產(chǎn)與市場拓展承包合同范本4篇
- 二零二五年度建筑渣土清運及環(huán)保處理承包協(xié)議4篇
- 二零二五版女方出軌離婚時子女監(jiān)護權(quán)及贍養(yǎng)費協(xié)議范本3篇
- 2025年槳扇發(fā)動機項目風險分析和評估報告
- 鉗工考試題及參考答案
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)五 引發(fā)用戶共鳴外部條件的把控
- 工程造價專業(yè)職業(yè)能力分析
- 醫(yī)藥高等數(shù)學知到章節(jié)答案智慧樹2023年浙江中醫(yī)藥大學
- 沖渣池施工方案
- 人教版初中英語八年級下冊 單詞默寫表 漢譯英
- 學校網(wǎng)絡(luò)信息安全管理辦法
- 中國古代文學史 馬工程課件(下)21第九編晚清文學 緒論
- 2023年鐵嶺衛(wèi)生職業(yè)學院高職單招(語文)試題庫含答案解析
- 2205雙相不銹鋼的焊接工藝
- 2023年全國高中數(shù)學聯(lián)賽江西省預賽試題及答案
評論
0/150
提交評論