版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
衡中同卷2024屆高一下數(shù)學期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,正四棱柱中(底面是正方形,側棱垂直于底面),,則異面直線與所成角的余弦值為()A. B. C. D.2.在中,若,則下列結論錯誤的是()A.當時,是直角三角形 B.當時,是銳角三角形C.當時,是鈍角三角形 D.當時,是鈍角三角形3.如圖,為正三角形,,,則多面體的正視圖(也稱主視圖)是A. B. C. D.4.數(shù)列中,,則數(shù)列的極限值()A.等于0 B.等于1 C.等于0或1 D.不存在5.已知a>0,x,y滿足約束條件,若z=2x+y的最小值為1,則a=A. B. C.1 D.26.已知正數(shù)、滿足,則的最小值為()A. B. C. D.7.某空間幾何體的三視圖如圖所示,則這個幾何體的體積等于()A.1 B.2 C.4 D.68.下列函數(shù)中,在區(qū)間上單調遞增的是()A. B. C. D.9.在中,角的對邊分別為,若,則的最小值是()A.5 B.8 C.7 D.610.數(shù)列的通項公式為,則數(shù)列的前100項和().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.公比為2的等比數(shù)列的各項都是正數(shù),且,則的值為___________12.正六棱柱各棱長均為,則一動點從出發(fā)沿表面移動到時的最短路程為__________.13.已知數(shù)列滿足,若對任意都有,則實數(shù)的取值范圍是_________.14.已知直線平面,,那么在平面內過點P與直線m平行的直線有________條.15.函數(shù),的值域是_____.16.若角是第四象限角,則角的終邊在_____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當時,解不等式;(2)若,的解集為,求的最小値.18.在中,角A,B,C的對邊分別為a,b,c,若,.(1)求角A的大?。唬?)若,求的周長.19.中,角A,B,C所對邊分別是a、b、c,且.(1)求的值;(2)若,求面積的最大值.20.如圖,在三棱柱中,側面是邊長為2的正方形,點是棱的中點.(1)證明:平面.(2)若三棱錐的體積為4,求點到平面的距離.21.習主席說:“綠水青山就是金山銀山”.某地相應號召,投入資金進行生態(tài)環(huán)境建設,并以此發(fā)展旅游產業(yè),根據(jù)規(guī)劃,2018年投入1000萬元,以后每年投入將比上一年減少,本年度當?shù)芈糜螛I(yè)收入估計為500萬元,由于該項建設對旅游業(yè)的促進作用,預計今后的旅游業(yè)收入每年會比上一年增加.(1)設年內(2018年為第一年)總投入為萬元,旅游業(yè)總收入為萬元,寫出、的表達式;(2)至少到哪一年,旅游業(yè)的總收入才能超過總投入.(參考數(shù)據(jù):,,)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
試題分析:連結,異面直線所成角為,設,在中考點:異面直線所成角2、D【解析】
由正弦定理化簡已知可得,利用余弦定理,勾股定理,三角形兩邊之和大于第三邊等知識逐一分析各個選項即可得解.【詳解】解:為非零實數(shù)),可得:,由正弦定理,可得:,對于A,時,可得:,可得,即為直角,可得是直角三角形,故正確;對于B,時,可得:,可得為最大角,由余弦定理可得,可得是銳角三角形,故正確;對于C,時,可得:,可得為最大角,由余弦定理可得,可得是鈍角三角形,故正確;對于D,時,可得:,可得,這樣的三角形不存在,故錯誤.故選:D.【點睛】本題主要考查了正弦定理,余弦定理,勾股定理在解三角形中的應用,考查了分類討論思想,屬于基礎題.3、D【解析】
為三角形,,平面,
且,則多面體的正視圖中,
必為虛線,排除B,C,
說明右側高于左側,排除A.,故選D.4、B【解析】
根據(jù)題意得到:時,,再計算即可.【詳解】因為當時,.所以.故選:B【點睛】本題主要考查數(shù)列的極限,解題時要注意公式的選取和應用,屬于中檔題.5、B【解析】
畫出不等式組表示的平面區(qū)域如圖所示:當目標函數(shù)z=2x+y表示的直線經過點A時,取得最小值,而點A的坐標為(1,),所以,解得,故選B.【考點定位】本小題考查線性規(guī)劃的基礎知識,難度不大,線性規(guī)劃知識在高考中一般以小題的形式出現(xiàn),是高考的重點內容之一,幾乎年年必考.6、B【解析】
由得,再將代數(shù)式與相乘,利用基本不等式可求出的最小值.【詳解】,所以,,則,所以,,當且僅當,即當時,等號成立,因此,的最小值為,故選.【點睛】本題考查利用基本不等式求最值,對代數(shù)式進行合理配湊,是解決本題的關鍵,屬于中等題.7、B【解析】
先由三視圖還原幾何體,再由題中數(shù)據(jù),結合棱錐的體積公式,即可得出結果.【詳解】由三視圖可得,該幾何體為底面是直角梯形,側棱垂直于底面的四棱錐,如圖所示:由題意可得其體積為:故選B【點睛】本題主要考查由幾何體的三視圖求幾何體的體積,熟記棱錐的結構特征以及體積公式即可,屬于??碱}型.8、A【解析】
判斷每個函數(shù)在上的單調性即可.【詳解】解:在上單調遞增,,和在上都是單調遞減.故選:A.【點睛】考查冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)和反比例函數(shù)的單調性.9、D【解析】
先化簡條件中的等式,利用余弦定理整理得到等式,然后根據(jù)等式利用基本不等式求解最小值.【詳解】由,得,化簡整理得,,即,當且僅當,即時,取等號.故選D.【點睛】本題考查正、余弦定理在邊角化簡中的應用,難度一般.對于利用基本不等求最值的時候,一定要注意取到等號的條件.10、C【解析】
根據(jù)通項公式,結合裂項求和法即可求得.【詳解】數(shù)列的通項公式為,則故選:C.【點睛】本題考查了裂項求和的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】
根據(jù)等比數(shù)列的性質與基本量法求解即可.【詳解】由題,因為,又等比數(shù)列的各項都是正數(shù),故.故.故答案為:【點睛】本題主要考查了等比數(shù)列的等積性與各項之間的關系.屬于基礎題.12、【解析】
根據(jù)可能走的路徑,將所給的正六棱柱展開,利用平面幾何知識求解比較.【詳解】將所給的正六棱柱下圖(2)表面按圖(1)展開.,,,故從A沿正側面和上表面到D1的路程最短為故答案為:.【點睛】本題主要考查了空間幾何體展形圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.13、【解析】
由題若對于任意的都有,可得解出即可得出.【詳解】∵,若對任意都有,
∴.
∴,
解得.
故答案為.【點睛】本題考查了數(shù)列與函數(shù)的單調性、不等式的解法,考查了推理能力與計算能力,屬于中檔題.14、1【解析】
利用線面平行的性質定理來進行解答.【詳解】過直線與點可確定一個平面,由于為公共點,所以兩平面相交,不妨設交線為,因為直線平面,所以,其它過點的直線都與相交,所以與也不會平行,所以過點且平行于的直線只有一條,在平面內,故答案為:1.【點睛】本題考查線面平行的性質定理,是基礎題.15、【解析】
首先根據(jù)的范圍求出的范圍,從而求出值域?!驹斀狻慨敃r,,由于反余弦函數(shù)是定義域上的減函數(shù),且所以值域為故答案為:.【點睛】本題主要考查了復合函數(shù)值域的求法:首先求出內函數(shù)的值域再求外函數(shù)的值域。屬于基礎題。16、第二或第四象限【解析】
根據(jù)角是第四象限角,寫出角的范圍,即可求出角的終邊所在位置.【詳解】因為角是第四象限角,所以,即有,當為偶數(shù)時,角的終邊在第四象限;當為奇數(shù)時,角的終邊在第二象限,故角的終邊在第二或第四象限.【點睛】本題主要考查象限角的集合的應用.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)最小值為.【解析】
(1)由一元二次不等式的解法即可求得結果;(2)由題的根即為,,根據(jù)韋達定理可判斷,同為正,且,從而利用基本不等式的常數(shù)代換求出的最小值.【詳解】(1)當時,不等式,即為,可得,即不等式的解集為或.(2)由題的根即為,,故,,故,同為正,則,當且僅當,等號成立,所以的最小值為.【點睛】本題考查一元二次不等式的解法和基本不等式的知識,考查邏輯推理能力和計算能力,屬中檔題.18、(1);(2)【解析】
(1)根據(jù)三角形面積公式,結合平面向量數(shù)量積定義,分別表示出,聯(lián)立即可求得,進而得的值.(2)由,結合余弦定理即可表示出,由(1)可得.即可聯(lián)立表示出,進而求得周長.【詳解】(1)因為,所以,則而,可得,所以即化簡可得所以;(2)因為,所以由余弦定理可得,即,由(1)知,則,所以,所以的周長為.【點睛】本題考查了三角形面積公式的應用,余弦定理解三角形,平面向量數(shù)量積的定義及應用,屬于中檔題.19、(1);(2)【解析】
(1)將化簡代入數(shù)據(jù)得到答案.(2)利用余弦定理和均值不等式計算,代入面積公式得到答案.【詳解】;(2)由,可得,由余弦定理可得,即有,當且僅當,取得等號.則面積為.即有時,的面積取得最大值.【點睛】本題考查了三角恒等變換,余弦定理,面積公式,均值不等式,屬于常考題型.20、(1)見解析(2)6【解析】
(1)由平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行可判定平面;(2)由三棱錐的體積為4,可知四棱錐的體積,再由三棱錐的體積公式即可求得高.【詳解】(1)證明:連接,與交于點,連接.因為側面是平行四邊形,所以點是的中點.因為點是棱的中點,所以.因為平面,平面,所以平面.(2)解:因為三棱錐的體積為4,所以三棱柱的體積為12,則四棱錐的體積為.因為側面是邊長為2的正方形,所以側面的面積為.設點到平面的距離為,則,解得.故點到平面的距離為6.【點睛】本題考查直線平行平面的判定和用三棱錐體積公式求點到平面的距離.21、(1),;(2)2022年【解析】
(1)根據(jù)題意,知每年投入資金和旅游業(yè)收入是等比數(shù)列,根據(jù)等比數(shù)列的前n項和公式,即可求解;(2)根據(jù)(1)中解析式,列出不等式,令,化簡不等式,即可求解.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人教五四新版九年級科學下冊月考試卷含答案
- 2024 四川公務員考試行測真題(綜合管理崗)
- 二零二五年度農機維修保養(yǎng)及零配件供應合同4篇
- 2025年度美團騎手服務規(guī)范及考核評價合同3篇
- 2025年度特色餐廳廚房承包項目合同4篇
- 2025年度奶業(yè)市場調研與競爭分析合同4篇
- 拆除金屬廢物回收利用合同(2篇)
- 二零二五年度icp許可證申請與互聯(lián)網(wǎng)企業(yè)品牌建設合同3篇
- 二零二五年度儲藏室租賃合同終止及資產返還協(xié)議4篇
- 2025年度食品級儲藏室設計與建造合同3篇
- 四川省成都市武侯區(qū)2023-2024學年九年級上學期期末考試化學試題
- 2024年秋季人教版七年級上冊生物全冊教學課件(2024年秋季新版教材)
- 環(huán)境衛(wèi)生學及消毒滅菌效果監(jiān)測
- 2024年共青團入團積極分子考試題庫(含答案)
- 碎屑巖油藏注水水質指標及分析方法
- 【S洲際酒店婚禮策劃方案設計6800字(論文)】
- 鐵路項目征地拆遷工作體會課件
- 醫(yī)院死亡報告年終分析報告
- 中國教育史(第四版)全套教學課件
- 2023年11月英語二級筆譯真題及答案(筆譯實務)
- 上海民辦楊浦實驗學校初一新生分班(摸底)語文考試模擬試卷(10套試卷帶答案解析)
評論
0/150
提交評論