版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省古丈縣第一中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為()A.640 B.520 C.280 D.2402.已知函數(shù),如果不等式的解集為,那么不等式的解集為()A. B.C. D.3.設(shè)雙曲線(xiàn)的左右焦點(diǎn)分別是,過(guò)的直線(xiàn)交雙曲線(xiàn)的左支于兩點(diǎn),若,且,則雙曲線(xiàn)的離心率是()A. B. C. D.4.下圖為某市國(guó)慶節(jié)7天假期的樓房認(rèn)購(gòu)量與成交量的折線(xiàn)圖,小明同學(xué)根據(jù)折線(xiàn)圖對(duì)這7天的認(rèn)購(gòu)量(單位:套)與成交量(單位:套)作出如下判斷:①日成交量的中位數(shù)是26;②日成交量超過(guò)日平均成交量的有2天;③認(rèn)購(gòu)量與日期正相關(guān);④10月2日到10月6日認(rèn)購(gòu)量的分散程度比成交量的分散程度更大.則上述判斷錯(cuò)誤的個(gè)數(shù)為()A.4 B.3 C.2 D.15.若在是減函數(shù),則的最大值是A. B. C. D.6.已知函數(shù)f(x)=2x+log2x,且實(shí)數(shù)a>b>c>0,滿(mǎn)足A.x0<a B.x0>a7.《九章算術(shù)》中,將四個(gè)面均為直角三角形的三棱錐稱(chēng)為鱉臑,若三棱錐為鱉臑,其中平面,,三棱錐的四個(gè)頂點(diǎn)都在球的球面上,則該球的體積是()A. B. C. D.8.已知,則的最小值為()A.2 B.0 C.-2 D.-49.若實(shí)數(shù)滿(mǎn)足約束條件則的最大值與最小值之和為()A. B. C. D.10..設(shè)、是關(guān)于x的方程的兩個(gè)不相等的實(shí)數(shù)根,那么過(guò)兩點(diǎn),的直線(xiàn)與圓的位置關(guān)系是()A.相離. B.相切. C.相交. D.隨m的變化而變化.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在正方體中,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn),平面交棱于點(diǎn).下列命題正確的為_(kāi)______________.①存在點(diǎn),使得//平面;②對(duì)于任意的點(diǎn),平面平面;③存在點(diǎn),使得平面;④對(duì)于任意的點(diǎn),四棱錐的體積均不變.12.已知向量,,則與的夾角等于_______.13.無(wú)窮等比數(shù)列的首項(xiàng)是某個(gè)正整數(shù),公比為單位分?jǐn)?shù)(即形如:的分?jǐn)?shù),為正整數(shù)),若該數(shù)列的各項(xiàng)和為3,則________.14.已知無(wú)窮等比數(shù)列的所有項(xiàng)的和為,則首項(xiàng)的取值范圍為_(kāi)____________.15.正方形和內(nèi)接于同一個(gè)直角三角形ABC中,如圖所示,設(shè),若兩正方形面積分別為=441,=440,則=______16.已知指數(shù)函數(shù)上的最大值與最小值之和為10,則=____________。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,是正方形,是該正方形的中心,是平面外一點(diǎn),底面,是的中點(diǎn).求證:(1)平面;(2)平面平面.18.在等差數(shù)列中,,且前7項(xiàng)和.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.19.已知為數(shù)列的前項(xiàng)和,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.20.?dāng)?shù)列中,,.(1)求證:數(shù)列為等差數(shù)列,求數(shù)列的通項(xiàng)公式;(2)若數(shù)列的前項(xiàng)和為,求證:.21.如圖所示,在直三棱柱(側(cè)面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,設(shè)的中點(diǎn)為D,.(1)求證:平面;(2)求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
由頻率分布直方圖得到初賽成績(jī)大于90分的頻率,由此能求出獲得復(fù)賽資格的人數(shù).【詳解】初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),由頻率分布直方圖得到初賽成績(jī)大于90分的頻率為:1﹣(0.0025+0.0075+0.0075)×20=0.1.∴獲得復(fù)賽資格的人數(shù)為:0.1×800=2.故選:B.【點(diǎn)睛】本題考查頻率分布直方圖的應(yīng)用,考查頻數(shù)的求法,考查頻率分布直方圖等基礎(chǔ)知識(shí),是基礎(chǔ)題.2、A【解析】
一元二次不等式大于零解集是,先判斷二次項(xiàng)系數(shù)為負(fù),再根據(jù)根與系數(shù)關(guān)系,可求出a,b的值,代入解析式,求解不等式.【詳解】由的解集是,則故有,即.由解得或故不等式的解集是,故選:A.【點(diǎn)睛】對(duì)于含參數(shù)的一元二次不等式需要先判斷二次項(xiàng)系數(shù)的正負(fù),再進(jìn)一步求解參數(shù).3、C【解析】,則,所以,,則,所以,故選C。點(diǎn)睛:離心率問(wèn)題關(guān)鍵是利用圓錐曲線(xiàn)的幾何性質(zhì),以及三角形的幾何關(guān)系來(lái)解決,本題中,由雙曲線(xiàn)的幾何性質(zhì),可以將圖中的各邊長(zhǎng)都表示出來(lái),再利用同一個(gè)角在兩個(gè)三角形中的余弦定理,就可以得到的等量關(guān)系,求出離心率。4、B【解析】
將國(guó)慶七天認(rèn)購(gòu)量和成交量從小到大排列,即可判斷①;計(jì)算成交量的平均值,可由成交量數(shù)據(jù)判斷②;由圖可判斷③;計(jì)算認(rèn)購(gòu)量的平均值與方差,成交量的平均值與方差,對(duì)方差比較即可判斷④.【詳解】國(guó)慶七天認(rèn)購(gòu)量從小到大依次為:91,100,105,107,112,223,276成交量從小到大依次為:8,13,16,26,32,38,166對(duì)于①,成交量的中為數(shù)為26,所以①正確;對(duì)于②,成交量的平均值為,有1天成交量超過(guò)平均值,所以②錯(cuò)誤;對(duì)于③,由圖可知認(rèn)購(gòu)量與日期沒(méi)有正相關(guān)性,所以③錯(cuò)誤;對(duì)于④,10月2日到10月6日認(rèn)購(gòu)量的平均值為方差為10月2日到10月6日成交量的平均值為方差為所以由方差性質(zhì)可知,10月2日到10月6日認(rèn)購(gòu)量的分散程度比成交量的分散程度更小,所以④錯(cuò)誤;綜上可知,錯(cuò)誤的為②③④故選:B【點(diǎn)睛】本題考查了統(tǒng)計(jì)的基本內(nèi)容,由圖示分析計(jì)算各個(gè)量,利用方差比較數(shù)據(jù)集中程度,屬于基礎(chǔ)題.5、A【解析】
分析:先確定三角函數(shù)單調(diào)減區(qū)間,再根據(jù)集合包含關(guān)系確定的最大值.詳解:因?yàn)?,所以由得因此,從而的最大值為,選A.點(diǎn)睛:函數(shù)的性質(zhì):(1).(2)周期(3)由求對(duì)稱(chēng)軸,(4)由求增區(qū)間;由求減區(qū)間.6、D【解析】
由函數(shù)的單調(diào)性可得:當(dāng)x0<c時(shí),函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿(mǎn)足f(a)f(b)f(c)【詳解】因?yàn)楹瘮?shù)f(x)=2則函數(shù)y=f(x)在(0,+∞)為增函數(shù),又實(shí)數(shù)a>b>c>0,滿(mǎn)足f(a)f(b)f(c)<0,則f(a),f(b),f(c)為負(fù)數(shù)的個(gè)數(shù)為奇數(shù),對(duì)于選項(xiàng)A,B,C選項(xiàng)可能成立,對(duì)于選項(xiàng)D,當(dāng)x0函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿(mǎn)足f(a)f(b)f(c)<0,故選項(xiàng)D不可能成立,故選:D.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,屬于中檔題.7、A【解析】
根據(jù)三棱錐的結(jié)構(gòu)特征和線(xiàn)面位置關(guān)系,得到中點(diǎn)為三棱錐的外接球的球心,求得球的半徑,利用球的體積公式,即可求解.【詳解】由題意,如圖所示,因?yàn)椋覟橹苯侨切?,所以,又因?yàn)槠矫?,所以,則平面,得.又由,所以中點(diǎn)為三棱錐的外接球的球心,則外接球的半徑.所以該球的體積是.故選A.【點(diǎn)睛】本題考查了有關(guān)球的組合體問(wèn)題,以及三棱錐的體積的求法,解答時(shí)要認(rèn)真審題,注意球的性質(zhì)的合理運(yùn)用,求解球的組合體問(wèn)題常用方法有(1)三條棱兩兩互相垂直時(shí),可恢復(fù)為長(zhǎng)方體,利用長(zhǎng)方體的體對(duì)角線(xiàn)為外接球的直徑,求出球的半徑;(2)利用球的截面的性質(zhì),根據(jù)勾股定理列出方程求解球的半徑.8、D【解析】
根據(jù)不等式組畫(huà)出可行域,借助圖像得到最值.【詳解】根據(jù)不等式組畫(huà)出可行域得到圖像:將目標(biāo)函數(shù)化為,根據(jù)圖像得到當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí)取得最小值,代入此點(diǎn)得到z=-4.故答案為:D.【點(diǎn)睛】利用線(xiàn)性規(guī)劃求最值的步驟:(1)在平面直角坐標(biāo)系內(nèi)作出可行域;(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見(jiàn)的類(lèi)型有截距型(型)、斜率型(型)和距離型(型);(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類(lèi)型,并結(jié)合可行域確定最優(yōu)解;(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值。9、A【解析】
首先根據(jù)不等式組畫(huà)出對(duì)應(yīng)的可行域,再分別計(jì)算出頂點(diǎn)的坐標(biāo),帶入目標(biāo)函數(shù)求出相應(yīng)的值,即可找到最大值和最小值.【詳解】不等式組對(duì)應(yīng)的可行域如圖所示:,.,.,,.,,.故選:A【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃,根據(jù)不等式組畫(huà)出可行域?yàn)榻忸}的關(guān)鍵,屬于簡(jiǎn)單題.10、D【解析】直線(xiàn)AB的方程為.即,所以直線(xiàn)AB的方程為,因?yàn)?所以,所以,所以直線(xiàn)AB與圓可能相交,也可能相切,也可能相離.二、填空題:本大題共6小題,每小題5分,共30分。11、①②④【解析】
根據(jù)線(xiàn)面平行和線(xiàn)面垂直的判定定理,以及面面垂直的判定定理和性質(zhì)分別進(jìn)行判斷即可.【詳解】①當(dāng)為棱上的一中點(diǎn)時(shí),此時(shí)也為棱上的一個(gè)中點(diǎn),此時(shí)//,滿(mǎn)足//平面,故①正確;②連結(jié),則平面,因?yàn)槠矫?,所以平面平面,故②正確;③平面,不可能存在點(diǎn),使得平面,故③錯(cuò)誤;④四棱錐的體積等于,設(shè)正方體的棱長(zhǎng)為1.∵無(wú)論、在何點(diǎn),三角形的面積為為定值,三棱錐的高,保持不變,三角形的面積為為定值,三棱錐的高為,保持不變.∴四棱錐的體積為定值,故④正確.故答案為①②④.【點(diǎn)睛】本題主要考查空間直線(xiàn)和平面平行或垂直的位置關(guān)系的判斷,解答本題的關(guān)鍵正確利用分割法求空間幾何體的體積的方法,綜合性較強(qiáng),難度較大.12、【解析】
由已知向量的坐標(biāo)求得兩向量的模及數(shù)量積,代入數(shù)量積求夾角公式得答案.【詳解】∵(﹣1,),(,﹣1),∴,,則cos,∴與的夾角等于.故答案為:.【點(diǎn)睛】本題考查平面向量的數(shù)量積運(yùn)算,考查了由數(shù)量積求向量的夾角,是基礎(chǔ)題.13、【解析】
利用無(wú)窮等比數(shù)列的各項(xiàng)和,可求得,從而,利用首項(xiàng)是某個(gè)自然數(shù),可求,進(jìn)而可求出.【詳解】無(wú)窮等比數(shù)列各項(xiàng)和為3,,是個(gè)自然數(shù),則,.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.14、【解析】
設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,根據(jù)無(wú)窮等比數(shù)列的和得出與所滿(mǎn)足的關(guān)系式,由此可求出實(shí)數(shù)的取值范圍.【詳解】設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,由于無(wú)窮等比數(shù)列的所有項(xiàng)的和為,則,.當(dāng)時(shí),則,此時(shí),;當(dāng)時(shí),則,此時(shí),.因此,首項(xiàng)的取值范圍是.故答案為:.【點(diǎn)睛】本題考查利用無(wú)窮等比數(shù)列的和求首項(xiàng)的取值范圍,解題的關(guān)鍵就是結(jié)合題意得出首項(xiàng)和公比的關(guān)系式,利用不等式的性質(zhì)或函數(shù)的單調(diào)性來(lái)求解,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.15、【解析】
首先根據(jù)在正方形S1和S2內(nèi),S1=441,S2=440,分別求出兩個(gè)正方形的邊長(zhǎng),然后分別表示出AF、FC、AM、MC的長(zhǎng)度,最后根據(jù)AF+FC=AM+MC,列出關(guān)于α的三角函數(shù)等式,求出sin2α的值即可.【詳解】因?yàn)镾1=441,S2=440,所以FD21,MQ=MN,因?yàn)锳C=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),兩邊平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的求值問(wèn)題,考查了正方形、直角三角形的性質(zhì),屬于中檔題,解答此題的關(guān)鍵是分別表示出AF、FC、AM、MC的長(zhǎng)度,最后根據(jù)AF+FC=AM+MC,列出關(guān)于α的三角函數(shù)等式.16、【解析】
根據(jù)和時(shí)的單調(diào)性可確定最大值和最小值,進(jìn)而構(gòu)造方程求得結(jié)果.【詳解】當(dāng)時(shí),在上單調(diào)遞增,,解得:或(舍)當(dāng)時(shí),在上單調(diào)遞減,,解得:(舍)或(舍)綜上所述:故答案為:【點(diǎn)睛】本題考查利用函數(shù)最值求解參數(shù)值的問(wèn)題,關(guān)鍵是能夠根據(jù)指數(shù)函數(shù)得單調(diào)性確定最值點(diǎn).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)見(jiàn)解析.【解析】
(1)連接,證明后即得線(xiàn)面平行;(2)可證明平面,然后得面面垂直.【詳解】(1)如圖,連接,∵分別是中點(diǎn),∴,又平面,平面,∴平面;(2)∵,底面,底面,∴,又正方形中,,∴平面,而平面,∴平面平面.【點(diǎn)睛】本題考查證明線(xiàn)面平行和面面垂直,掌握線(xiàn)面平行和面面垂直的判定定理是解題關(guān)鍵.18、(1);(2)Sn=?3n+1+【解析】
(1)等差數(shù)列{an}的公差設(shè)為d,運(yùn)用等差數(shù)列的通項(xiàng)公式和求和公式,計(jì)算可得所求通項(xiàng)公式;(2)求得bn=2n?3n,由數(shù)列的錯(cuò)位相減法求和即可.【詳解】(1)等差數(shù)列{an}的公差設(shè)為d,a3=6,且前7項(xiàng)和T7=1.可得a1+2d=6,7a1+21d=1,解得a1=2,d=2,則an=2n;(2)bn=an?3n=2n?3n,前n項(xiàng)和Sn=2(1?3+2?32+3?33+…+n?3n),3Sn=2(1?32+2?33+3?34+…+n?3n+1),相減可得﹣2Sn=2(3+32+33+…+3n﹣n?3n+1)=2?(﹣n?3n+1),化簡(jiǎn)可得Sn=?3n+1+.【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園安全日活動(dòng)主題班會(huì)
- 上海立達(dá)學(xué)院《形體表演基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海交通職業(yè)技術(shù)學(xué)院《廣告設(shè)計(jì)實(shí)訓(xùn)策劃設(shè)計(jì)推廣三階段》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海建橋?qū)W院《工程制圖CAD》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海健康醫(yī)學(xué)院《建筑構(gòu)造入門(mén)》2023-2024學(xué)年第一學(xué)期期末試卷
- 公司職員管理制度分享合集
- 2024年中國(guó)煙氣道市場(chǎng)調(diào)查研究報(bào)告
- 上海海洋大學(xué)《市場(chǎng)營(yíng)銷(xiāo)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海海洋大學(xué)《初等代數(shù)研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海海事職業(yè)技術(shù)學(xué)院《金融服務(wù)禮儀》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年人教版數(shù)學(xué)五年級(jí)上冊(cè)期末檢測(cè)試卷(含答案)
- 【MOOC】犯罪心理學(xué)-中南財(cái)經(jīng)政法大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 【MOOC】商業(yè)銀行管理學(xué)-湖南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2024年山西建設(shè)投資集團(tuán)有限公司校園招聘考試筆試試題及答案解析
- 護(hù)理脊柱外科出科
- 2024江蘇鹽城港控股集團(tuán)限公司招聘23人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024年陜西省初中學(xué)業(yè)水平考試·數(shù)學(xué)
- 2024年三支一扶考試基本能力測(cè)驗(yàn)試題及解答參考
- 快遞員合同協(xié)議書(shū)格式
- 企業(yè)三年規(guī)劃方案
- 2024屆高考英語(yǔ)詞匯3500左右
評(píng)論
0/150
提交評(píng)論