版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省眉山一中辦學(xué)共同體2023-2024學(xué)年數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)在上單調(diào)遞增,且的圖象關(guān)于對(duì)稱.若,則的解集為()A. B.C. D.2.在一個(gè)錐體中,作平行于底面的截面,若這個(gè)截面面積與底面面積之比為1∶3,則錐體被截面所分成的兩部分的體積之比為()A.1∶ B.1∶9 C.1∶ D.1∶3.《趣味數(shù)學(xué)·屠夫列傳》中有如下問題:“戴氏善屠,日益功倍。初日屠五兩,今三十日屠訖,問共屠幾何?”其意思為:“有一個(gè)姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問一共屠了多少兩肉?”()A. B. C. D.4.在一段時(shí)間內(nèi)有2000輛車通過高速公路上的某處,現(xiàn)隨機(jī)抽取其中的200輛進(jìn)行車速統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如右面的頻率分布直方圖所示.若該處高速公路規(guī)定正常行駛速度為90km/h~120km/h,試估計(jì)2000輛車中,在這段時(shí)間內(nèi)以正常速度通過該處的汽車約有()A.30輛 B.1700輛 C.170輛 D.300輛5.某單位共有老年人180人,中年人540人,青年人a人,為調(diào)查身體健康狀況,需要從中抽取一個(gè)容量為m的樣本,用分層抽樣方法抽取進(jìn)行調(diào)查,樣本中的中年人為6人,則a和m的值不可以是下列四個(gè)選項(xiàng)中的哪組()A.a(chǎn)=810,m=17 B.a(chǎn)=450,m=14C.a(chǎn)=720,m=16 D.a(chǎn)=360,m=126.一個(gè)圓柱的軸截面是正方形,其側(cè)面積與一個(gè)球的表面積相等,那么這個(gè)圓柱的體積與這個(gè)球的體積之比為()A.1:3 B.3:1 C.2:3 D.3:27.設(shè)是等差數(shù)列的前項(xiàng)和,若,則A. B. C. D.8.甲、乙兩人下棋,甲獲勝的概率為40%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率為()A.50% B.30% C.10% D.60%9.設(shè)全集,集合,,則()A. B.C. D.10.已知,,三點(diǎn),則的形狀是()A.鈍角三角形 B.直角三角形C.銳角三角形 D.等腰直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖所示,則f()=________.12.水平放置的的斜二測(cè)直觀圖如圖所示,已知,,則邊上的中線的實(shí)際長(zhǎng)度為______.13.已知扇形的圓心角為,半徑為,則扇形的面積.14.已知正方體中,,分別為,的中點(diǎn),那么異面直線與所成角的余弦值為______.15.已知與的夾角為求=_____.16.已知實(shí)數(shù)滿足則的最小值為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.?dāng)?shù)列an,n∈N*各項(xiàng)均為正數(shù),其前n項(xiàng)和為S(1)求證數(shù)列Sn2為等差數(shù)列,并求數(shù)列(2)設(shè)bn=24Sn4-1,求數(shù)列bn的前n18.已知三棱柱(如圖所示),底面為邊長(zhǎng)為2的正三角形,側(cè)棱底面,,為的中點(diǎn).(1)求證:平面;(2)若為的中點(diǎn),求證:平面;(3)求三棱錐的體積.19.已知數(shù)列為等差數(shù)列,是數(shù)列的前n項(xiàng)和,且,.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前n項(xiàng)和.20.已知函數(shù)f(x)=.(1)若不等式k≤xf(x)+在x∈[1,3]上恒成立,求實(shí)數(shù)k的取值范圍;(2)當(dāng)x∈(m>0,n>0)時(shí),函數(shù)g(x)=tf(x)+1(t≥0)的值域?yàn)閇2-3m,2-3n],求實(shí)數(shù)t的取值范圍.21.如圖,墻上有一壁畫,最高點(diǎn)離地面4米,最低點(diǎn)離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角(1)若問:觀察者離墻多遠(yuǎn)時(shí),視角最大?(2)若當(dāng)變化時(shí),求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
首先根據(jù)題意得到的圖象關(guān)于軸對(duì)稱,,再根據(jù)函數(shù)的單調(diào)性畫出草圖,解不等式即可.【詳解】因?yàn)榈膱D象關(guān)于對(duì)稱,所以的圖象關(guān)于軸對(duì)稱,.又因?yàn)樵谏蠁握{(diào)遞增,所以函數(shù)的草圖如下:所以或,解得:或.故選:D【點(diǎn)睛】本題主要考查函數(shù)的對(duì)稱性,同時(shí)考查了函數(shù)的圖象平移變換,屬于中檔題.2、D【解析】解:因?yàn)樵谝粋€(gè)錐體中,作平行于底面的截面,若這個(gè)截面面積與底面面積之比為1∶3,那么分為的兩個(gè)錐體的體積比為1:,因此錐體被截面所分成的兩部分的體積之比為.1∶3、D【解析】
根據(jù)題意,得到該屠戶每天屠的肉成等比數(shù)列,記首項(xiàng)為,公比為,前項(xiàng)和為,由題中熟記,以及等比數(shù)列的求和公式,即可得出結(jié)果.【詳解】由題意,該屠戶每天屠的肉成等比數(shù)列,記首項(xiàng)為,公比為,前項(xiàng)和為,所以,,因此.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的應(yīng)用,熟記等比數(shù)列的求和公式即可,屬于基礎(chǔ)題型.4、B【解析】
由頻率分布直方圖求出在這段時(shí)間內(nèi)以正常速度通過該處的汽車的頻率,由此能估2000輛車中,在這段時(shí)間內(nèi)以正常速度通過該處的汽車約有多少輛.【詳解】由頻率分布直方圖得:在這段時(shí)間內(nèi)以正常速度通過該處的汽車的頻率為0.03+0.035+0.02×10=0.85∴估計(jì)2000輛車中,在這段時(shí)間內(nèi)以正常速度通過該處的汽車約有2000×0.85=1700(輛),故選B.【點(diǎn)睛】本題主要考查頻率分布直方圖的應(yīng)用,屬于中檔題.直方圖的主要性質(zhì)有:(1)直方圖中各矩形的面積之和為1;(2)組距與直方圖縱坐標(biāo)的乘積為該組數(shù)據(jù)的頻率;(3)每個(gè)矩形的中點(diǎn)橫坐標(biāo)與該矩形的縱坐標(biāo)相乘后求和可得平均值;(4)直觀圖左右兩邊面積相等處橫坐標(biāo)表示中位數(shù).5、B【解析】
根據(jù)分層抽樣的規(guī)律,計(jì)算a和m的關(guān)系為:8+a【詳解】某單位共有老年人180人,中年人540人,青年人a人,樣本中的中年人為6人,則老年人為:180×6540=22+6+代入選項(xiàng)計(jì)算,B不符合故答案為B【點(diǎn)睛】本題考查了分層抽樣,意在考查學(xué)生的計(jì)算能力.6、D【解析】
設(shè)圓柱的底面半徑為,利用圓柱側(cè)面積公式與球的表面積公式建立關(guān)系式,算出球的半徑,再利用圓柱與球的體積公式加以計(jì)算,可得所求體積之比.【詳解】設(shè)圓柱的底面半徑為,軸截面正方形邊長(zhǎng),則,可得圓柱的側(cè)面積,再設(shè)與圓柱表面積相等的球半徑為,則球的表面積,解得,因此圓柱的體積為,球的體積為,因此圓柱的體積與球的體積之比為.故選:D.【點(diǎn)睛】本題主要考查了圓柱的側(cè)面積和體積公式,以及球的表面積和體積公式的應(yīng)用,其中解答中熟記公式,合理計(jì)算半徑之間的關(guān)系是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、A【解析】,,選A.8、A【解析】
甲不輸?shù)母怕实扔诩撰@勝或者平局的概率相加,計(jì)算得到答案.【詳解】甲不輸?shù)母怕实扔诩撰@勝或者平局的概率相加甲、乙下成平局的概率為:故答案選A【點(diǎn)睛】本題考查了互斥事件的概率,意在考查學(xué)生對(duì)于概率的理解.9、A【解析】
進(jìn)行交集、補(bǔ)集的運(yùn)算即可.【詳解】?UB={x|﹣2<x<1};∴A∩(?UB)={x|﹣1<x<1}.故選:A.【點(diǎn)睛】考查描述法的定義,以及交集、補(bǔ)集的運(yùn)算.10、D【解析】
計(jì)算三角形三邊長(zhǎng)度,通過邊關(guān)系進(jìn)行判斷.【詳解】由兩點(diǎn)之間的距離公式可得:,,,因?yàn)椋夜试撊切螢榈妊苯侨切?故選:D.【點(diǎn)睛】本題考查兩點(diǎn)之間的距離公式,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
根據(jù)圖象看出周期、特殊點(diǎn)的函數(shù)值,解出待定系數(shù)即可解得.【詳解】由圖可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【點(diǎn)睛】本題考查由圖象求正切函數(shù)的解析式,屬于中檔題。12、【解析】
利用斜二測(cè)直觀圖的畫圖規(guī)則,可得為一個(gè)直角三角形,且,得,從而得到邊上的中線的實(shí)際長(zhǎng)度為.【詳解】利用斜二測(cè)直觀圖的畫圖規(guī)則,平行于軸或在軸上的線段,長(zhǎng)度保持不變;平行于軸或在軸上的線段,長(zhǎng)度減半,利用逆向原則,所以為一個(gè)直角三角形,且,所以,所以邊上的中線的實(shí)際長(zhǎng)度為.【點(diǎn)睛】本題考查斜二測(cè)畫法的規(guī)則,考查基本識(shí)圖、作圖能力.13、【解析】試題分析:由題可知,;考點(diǎn):扇形面積公式14、【解析】
異面直線所成角,一般平移到同一個(gè)平面求解.【詳解】連接DF,異面直線與所成角等于【點(diǎn)睛】異面直線所成角,一般平移到同一個(gè)平面求解.不能平移時(shí)通??紤]建系,利用向量解決問題.15、【解析】
由題意可得:,結(jié)合向量的運(yùn)算法則和向量模的計(jì)算公式可得的值.【詳解】由題意可得:,則:.【點(diǎn)睛】本題主要考查向量模的求解,向量的運(yùn)算法則等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16、【解析】
本題首先可以根據(jù)題意繪出不等式組表示的平面區(qū)域,然后結(jié)合目標(biāo)函數(shù)的幾何性質(zhì),找出目標(biāo)函數(shù)取最小值所過的點(diǎn),即可得出結(jié)果?!驹斀狻坷L制不等式組表示的平面區(qū)域如圖陰影部分所示,結(jié)合目標(biāo)函數(shù)的幾何意義可知,目標(biāo)函數(shù)在點(diǎn)處取得最小值,即?!军c(diǎn)睛】本題考查根據(jù)不等式組表示的平面區(qū)域來求目標(biāo)函數(shù)的最值,能否繪出不等式組表示的平面區(qū)域是解決本題的關(guān)鍵,考查數(shù)形結(jié)合思想,是簡(jiǎn)單題。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,an【解析】
(1)由題得Sn2-Sn-12=1(n≥2),即得數(shù)列Sn2為首項(xiàng)和公差都是1【詳解】(1)證明:∵2anSn-an整理得,Sn又S1∴數(shù)列Sn2為首項(xiàng)和公差都是∴S又Sn>0∴n≥2時(shí),an=S∴數(shù)列an的通項(xiàng)公式為a(2)解:∵bn∴Tn=1-1∵n∈N*依題意有23>1故所求最大正整數(shù)m的值為3.【點(diǎn)睛】本題主要考查等差數(shù)列性質(zhì)的證明,考查項(xiàng)和公式求通項(xiàng),考查裂項(xiàng)相消法求和,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18、(1)見解析(2)見解析(3)【解析】
(1)在平面找一條直線平行即可.(2)在平面內(nèi)找兩條相交直線垂直即可.(3)三棱錐即可【詳解】(1)連接,因?yàn)橹崩庵?,則為矩形,則為的中點(diǎn)連接,在中,為中位線,則平面(2)連接,底面底面底面①為正邊的中點(diǎn)②由①②及平面(3)因?yàn)槿〉闹悬c(diǎn),連接,則平面,即為高,【點(diǎn)睛】本題主要考查了直線與平面平行,直線與平面垂直的證明,以及三棱錐的體積公式,證明直線與平面平行往往轉(zhuǎn)化成證明直線與直線平行.屬于中等題.19、(1)(2)【解析】
(1)由等差數(shù)列可得,求得,即可求得通項(xiàng)公式;(2)由(1),則利用裂項(xiàng)相消法求數(shù)列的和即可【詳解】解:(1)因?yàn)閿?shù)列是等差數(shù)列,且,,則,解得,所以(2)由(1),,所以【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求數(shù)列的和20、(1)k≤1;(2)(0,1).【解析】試題分析:(1)把f(x)=代入,化簡(jiǎn)得k≤x在[1,3]上恒成立,所以k≤1.(2)g(x)=tf(x)+1=-+t+1,又x∈(m>0,n>0),所以g(x)在單調(diào)遞增,所以即,即m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個(gè)不等的正根.由根的分布,可得,解得0<t<1.試題解析:(1)∵xf(x)+=+=x,∴不等式k≤xf(x)+在x∈[1,3]上恒成立,即為k≤x在[1,3]上恒成立.∴k≤1.(2)∵g(x)=tf(x)+1=-+t+1,若t=0,則g(x)=1,不合題意,∴t>0.又當(dāng)t>0時(shí),g(x)=-+t+1在上顯然是單調(diào)增函數(shù),∴即∴m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個(gè)不等的正根.令h(x)=tx2-3x+1-t,則解得0<t<1.∴實(shí)數(shù)t的取值范圍是(0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024離婚雙方的共同債權(quán)債務(wù)處理合同
- 2024苗木種植與園林苗木種植基地規(guī)劃與建設(shè)勞務(wù)分包協(xié)議3篇
- 2024版活動(dòng)場(chǎng)地使用合同范本
- 2025年度生態(tài)農(nóng)業(yè)園承包合同格式規(guī)范4篇
- 2024鎳礦國(guó)際貿(mào)易法律事務(wù)咨詢服務(wù)合同3篇
- 2025年度新能源車輛代理記賬與補(bǔ)貼申請(qǐng)合同4篇
- 2025年度文化產(chǎn)業(yè)發(fā)展總經(jīng)理聘用協(xié)議3篇
- 《蒸汽鍋爐維護(hù)與管理》課件
- 2025年度個(gè)人二手房交易反擔(dān)保合同規(guī)范4篇
- 2025年度博物館展覽館日常保潔與文物保護(hù)合同4篇
- 2025年度影視制作公司兼職制片人聘用合同3篇
- 兒童糖尿病的飲食
- 2025屆高考語文復(fù)習(xí):散文的結(jié)構(gòu)與行文思路 課件
- 干細(xì)胞項(xiàng)目商業(yè)計(jì)劃書
- 拉薩市2025屆高三第一次聯(lián)考(一模)語文試卷(含答案解析)
- 浙江省嘉興市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末試題含解析
- 2024年高考新課標(biāo)Ⅱ卷語文試題講評(píng)課件
- 無人機(jī)航拍技術(shù)教案(完整版)
- 人教PEP版(2024)三年級(jí)上冊(cè)英語Unit 4《Plants around us》單元作業(yè)設(shè)計(jì)
- 《保密法》培訓(xùn)課件
- 醫(yī)院項(xiàng)目竣工驗(yàn)收和工程收尾階段的管理措施專項(xiàng)方案
評(píng)論
0/150
提交評(píng)論