版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆梅州市重點(diǎn)中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知與均為單位向量,它們的夾角為,那么等于()A. B. C. D.42.下列不等式中正確的是()A.若,,則B.若,則C.若,則D.若,則3.若,則()A. B. C. D.4.已知函數(shù)是奇函數(shù),若,則的取值范圍是()A. B. C. D.5.設(shè)為直線,是兩個(gè)不同的平面,下列說(shuō)法中正確的是()A.若,則B.若,則C.若,則D.若,則6.某社區(qū)義工隊(duì)有24名成員,他們年齡的莖葉圖如下表所示,先將他們按年齡從小到大編號(hào)為1至24號(hào),再用系統(tǒng)抽樣方法抽出6人組成一個(gè)工作小組,則這個(gè)小組年齡不超過(guò)55歲的人數(shù)為()3940112551366778889600123345A.1 B.2 C.3 D.47.化簡(jiǎn):()A. B. C. D.8.已知函數(shù),且此函數(shù)的圖象如圖所示,由點(diǎn)的坐標(biāo)是()A. B. C. D.9.如果若干個(gè)函數(shù)的圖象經(jīng)過(guò)平移后能夠重合,則稱這些函數(shù)為“同簇函數(shù)”.給出下列函數(shù):①;②;③;④.其中“同簇函數(shù)”的是()A.①②B.①④C.②③D.③④10.空氣質(zhì)量指數(shù)是反映空氣質(zhì)量狀況的指數(shù),指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如表:指數(shù)值0~5051~100101~150151~200201~300空氣質(zhì)量?jī)?yōu)良輕度污染中度污染重度污染嚴(yán)重污染如圖是某市10月1日-20日指數(shù)變化趨勢(shì):下列敘述錯(cuò)誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上的天數(shù)占C.該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好D.總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好二、填空題:本大題共6小題,每小題5分,共30分。11.已知兩點(diǎn)A(2,1)、B(1,1+)滿足=(sinα,cosβ),α,β∈(﹣,),則α+β=_______________12.已知三棱錐,若平面ABC,,則異面直線PB與AC所成角的余弦值為_(kāi)_____.13.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_(kāi)____.14.已知,,,的等比中項(xiàng)是1,且,,則的最小值是______.15.設(shè)為實(shí)數(shù),為不超過(guò)實(shí)數(shù)的最大整數(shù),如,.記,則的取值范圍為,現(xiàn)定義無(wú)窮數(shù)列如下:,當(dāng)時(shí),;當(dāng)時(shí),,若,則________.16.已知向量,,若與共線,則實(shí)數(shù)________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,是菱形,對(duì)角線與的交點(diǎn)為,四邊形為梯形,,.(1)若,求證:平面;(2)求證:平面平面;(3)若,求直線與平面所成角的余弦值.18.的內(nèi)角的對(duì)邊分別為,.(1)求;(2)若,的面積為,求.19.已知數(shù)列的首項(xiàng),其前n項(xiàng)和為滿足.(1)數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和表達(dá)式.20.在直角坐標(biāo)系中,點(diǎn),圓的圓心為,半徑為2.(Ⅰ)若,直線經(jīng)過(guò)點(diǎn)交圓于、兩點(diǎn),且,求直線的方程;(Ⅱ)若圓上存在點(diǎn)滿足,求實(shí)數(shù)的取值范圍.21.已知數(shù)列的前n項(xiàng)和為,,.(1)證明:數(shù)列為等比數(shù)列;(2)證明:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】本題主要考查的是向量的求模公式.由條件可知==,所以應(yīng)選A.2、D【解析】
根據(jù)不等式的性質(zhì)逐一判斷即可得解.【詳解】解:對(duì)于選項(xiàng)A,若,,不妨取,則,即A錯(cuò)誤;對(duì)于選項(xiàng)B,若,當(dāng)時(shí),則,即B錯(cuò)誤;對(duì)于選項(xiàng)C,若,不妨取,則,即C錯(cuò)誤;對(duì)于選項(xiàng)D,若,則,即,,即D正確,故選:D.【點(diǎn)睛】本題考查了不等式的性質(zhì),屬基礎(chǔ)題.3、A【解析】試題分析:,故選A.考點(diǎn):兩角和與差的正切公式.4、C【解析】
由題意首先求得m的值,然后結(jié)合函數(shù)的性質(zhì)求解不等式即可.【詳解】函數(shù)為奇函數(shù),則恒成立,即恒成立,整理可得:,據(jù)此可得:,即恒成立,據(jù)此可得:.函數(shù)的解析式為:,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故奇函數(shù)是定義域內(nèi)的單調(diào)遞增函數(shù),不等式即,據(jù)此有:,由函數(shù)的單調(diào)性可得:,求解不等式可得的取值范圍是.本題選擇C選項(xiàng).【點(diǎn)睛】對(duì)于求值或范圍的問(wèn)題,一般先利用函數(shù)的奇偶性得出區(qū)間上的單調(diào)性,再利用其單調(diào)性脫去函數(shù)的符號(hào)“f”,轉(zhuǎn)化為解不等式(組)的問(wèn)題,若f(x)為偶函數(shù),則f(-x)=f(x)=f(|x|).5、C【解析】
畫(huà)出長(zhǎng)方體,按照選項(xiàng)的內(nèi)容在長(zhǎng)方體中找到相應(yīng)的情況,即可得到答案【詳解】對(duì)于選項(xiàng)A,在長(zhǎng)方體中,任何一條棱都和它相對(duì)的兩個(gè)平面平行,但這兩個(gè)平面相交,所以A不正確;對(duì)于選項(xiàng)B,若,分別是長(zhǎng)方體的上、下底面,在下底面所在平面中任選一條直線,都有,但,所以B不正確;對(duì)于選項(xiàng)D,在長(zhǎng)方體中,令下底面為,左邊側(cè)面為,此時(shí),在右邊側(cè)面中取一條對(duì)角線,則,但與不垂直,所以D不正確;對(duì)于選項(xiàng)C,設(shè)平面,且,因?yàn)?,所以,又,所以,又,所以,所以C正確.【點(diǎn)睛】本題考查直線與平面的位置關(guān)系,屬于簡(jiǎn)單題6、B【解析】
求出樣本間隔,結(jié)合莖葉圖求出年齡不超過(guò)55歲的有8人,然后進(jìn)行計(jì)算即可.【詳解】解:樣本間隔為,年齡不超過(guò)55歲的有8人,則這個(gè)小組中年齡不超過(guò)55歲的人數(shù)為人.故選:.【點(diǎn)睛】本題主要考查莖葉圖以及系統(tǒng)抽樣的應(yīng)用,求出樣本間隔是解決本題的關(guān)鍵,屬于基礎(chǔ)題.7、A【解析】
.故選A.【點(diǎn)睛】考查向量數(shù)乘和加法的幾何意義,向量加法的運(yùn)算.8、B【解析】
先由函數(shù)圖象與軸的相鄰兩個(gè)交點(diǎn)確定該函數(shù)的最小正周期,并利用周期公式求出的值,再將點(diǎn)代入函數(shù)解析式,并結(jié)合函數(shù)在該點(diǎn)附近的單調(diào)性求出的值,即可得出答案。【詳解】解:由圖象可得函數(shù)的周期∴,得,將代入可得,∴(注意此點(diǎn)位于函數(shù)減區(qū)間上)∴由可得,∴點(diǎn)的坐標(biāo)是,故選:B.【點(diǎn)睛】本題考查利用圖象求三角函數(shù)的解析式,其步驟如下:①求、:,;②求:利用一些關(guān)鍵點(diǎn)求出最小正周期,再由公式求出;③求:代入關(guān)鍵點(diǎn)求出初相,如果代對(duì)稱中心點(diǎn)要注意附近的單調(diào)性。9、C【解析】試題分析:對(duì)于①中的函數(shù)而言,,對(duì)于③中的函數(shù)而言,,由“同簇函數(shù)”的定義而知,互為“同簇函數(shù)”的若干個(gè)函數(shù)的振幅相等,將②中的函數(shù)向左平移個(gè)單位長(zhǎng)度,得到的新函數(shù)解析式為,故選C.考點(diǎn):1.新定義;2.三角函數(shù)圖象變換10、C【解析】
根據(jù)所給圖象,結(jié)合中位數(shù)的定義、指數(shù)與污染程度的關(guān)系以及古典概型概率公式,對(duì)四個(gè)選項(xiàng)逐一判斷即可.【詳解】對(duì),因?yàn)榈?0天與第11天指數(shù)值都略高100,所以中位數(shù)略高于100,正確;對(duì),中度污染及以上的有第11,13,14,15,17天,共5天占,正確;對(duì),由圖知,前半個(gè)月中,前4天的空氣質(zhì)量越來(lái)越好,后11天該市的空氣質(zhì)量越來(lái)越差,錯(cuò)誤;對(duì),由圖知,10月上旬大部分指數(shù)在100以下,10月中旬大部分指數(shù)在100以上,所以正確,故選C.【點(diǎn)睛】與實(shí)際應(yīng)用相結(jié)合的題型也是高考命題的動(dòng)向,這類問(wèn)題的特點(diǎn)是通過(guò)現(xiàn)實(shí)生活的事例考查書(shū)本知識(shí),解決這類問(wèn)題的關(guān)鍵是耐心讀題、仔細(xì)理解題,只有吃透題意,才能將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型進(jìn)行解答.二、填空題:本大題共6小題,每小題5分,共30分。11、或0【解析】
運(yùn)用向量的加減運(yùn)算和特殊角的三角函數(shù)值,可得所求和.【詳解】?jī)牲c(diǎn)A(2,1)、B(1,1)滿足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即為sinα,cosβ,α,β∈(),可得α,β=±,則α+β=0或.故答案為0或.【點(diǎn)睛】本題考查向量的加減運(yùn)算和三角方程的解法,考查運(yùn)能力,屬于基礎(chǔ)題.12、【解析】
過(guò)B作,且,則或其補(bǔ)角即為異面直線PB與AC所成角由此能求出異面直線PB與AC所成的角的余弦值.【詳解】過(guò)B作,且,則四邊形為菱形,如圖所示:或其補(bǔ)角即為異面直線PB與AC所成角.設(shè).,,平面ABC,,.異面直線PB與AC所成的角的余弦值為.故答案為.【點(diǎn)睛】本題考查異面直線所成角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).13、【解析】
由已知求得母線長(zhǎng),代入圓錐側(cè)面積公式求解.【詳解】由已知可得r=1,h=,則圓錐的母線長(zhǎng)l=,∴圓錐的側(cè)面積S=πrl=2π.故答案為:2π.【點(diǎn)睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.14、4【解析】
,的等比中項(xiàng)是1,再用均值不等式得到答案.【詳解】,的等比中項(xiàng)是1當(dāng)時(shí)等號(hào)成立.故答案為4【點(diǎn)睛】本題考查了等比中項(xiàng),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.15、【解析】
根據(jù)已知條件,計(jì)算數(shù)列的前幾項(xiàng),觀察得出無(wú)窮數(shù)列呈周期性變化,即可求出的值?!驹斀狻慨?dāng)時(shí),,,,,……,無(wú)窮數(shù)列周期性變化,周期為2,所以。【點(diǎn)睛】本題主要考查學(xué)生的數(shù)學(xué)抽象能力,通過(guò)取整函數(shù)得到數(shù)列,觀察數(shù)列的特征,求數(shù)列中的某項(xiàng)值。16、【解析】
根據(jù)平面向量的共線定理與坐標(biāo)表示,列方程求出x的值.【詳解】向量(3,﹣1),(x,2),若與共線,則3×2﹣(﹣1)?x=0,解得x=﹣1.故答案為﹣1.【點(diǎn)睛】本題考查了平面向量的共線定理與坐標(biāo)表示的應(yīng)用問(wèn)題,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)【解析】
(1)取的中點(diǎn),連接,,從而可得為平行四邊形,即可證明平面;(2)只需證明平面.即可證明平面平面;(3)作于,則為與平面所成角,在中,由余弦定理得即可.【詳解】(1)證明:取的中點(diǎn),連接,,∵是菱形的對(duì)角線,的交點(diǎn),∴,且,又∵,且,∴,且,從而為平行四邊形,∴,又平面,平面,∴平面;(2)∵四邊形為菱形,∴,∵,是的中點(diǎn),∴,又,∴平面,又平面,∴平面平面;(3)作于,∵平面平面,∴平面,則為與平面所成角,由及四邊形為菱形,得為正三角形,則,,,∴為正三角形,從而,在中,由余弦定理,得,∴與平面所成角的余弦值為.【點(diǎn)睛】本題主要考查了空間線面位置關(guān)系、線面角的計(jì)算,屬于中檔題.18、(1);(2)8.【解析】
(1)首先利用正弦定理邊化角,再利用余弦定理可得結(jié)果;(2)利用面積公式和余弦定理可得結(jié)果.【詳解】(1)因?yàn)?,所以,則,因?yàn)?,所?(2)因?yàn)榈拿娣e為,所以,即,因?yàn)?,所以,所?【點(diǎn)睛】本題主要考查解三角形的綜合應(yīng)用,意在考查學(xué)生的基礎(chǔ)知識(shí),轉(zhuǎn)化能力及計(jì)算能力,難度不大.19、(1);(2)【解析】
(1)根據(jù)等差數(shù)列性質(zhì),由可知為等差數(shù)列,結(jié)合首項(xiàng)與公差即可求得的表達(dá)式,由即可求得數(shù)列的通項(xiàng)公式;(2)代入數(shù)列的通項(xiàng)公式可得數(shù)列的通項(xiàng)公式.結(jié)合錯(cuò)位相減法,即可求得數(shù)列的前n項(xiàng)和.【詳解】(1)由,可知是等差數(shù)列,其公差又,得,知首項(xiàng)為,得,即當(dāng)時(shí),有當(dāng),也滿足此通項(xiàng),故;(2)由(1)可知,所以可得由兩式相減得整理得.【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的求法,的應(yīng)用,錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,屬于中檔題.20、(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)勾股定理求出圓心到直線的距離d,利用d=1以直線的斜率存在、不存在兩種情況進(jìn)行分類討論;(Ⅱ)設(shè),由求出x、y滿足的關(guān)系式,可得點(diǎn)在圓上,推出圓與圓有公共點(diǎn),所以,列出不等式求解即可.【詳解】(Ⅰ)當(dāng),圓心為,圓的方程為,設(shè)圓心到直線的距離為,則.①若直線的斜率存在,設(shè)直線的方程為,即,,解得,此時(shí)的方程為,即.②若直線的斜率不存在,直線的方程為,驗(yàn)證滿足,符合題意.綜上所述,直線的方程為或.(Ⅱ)設(shè),則,于是由得,即,所以點(diǎn)在圓上,又點(diǎn)在圓上,故圓與圓有公共點(diǎn),即,于是,解得,因此實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年校園小賣(mài)部租賃合同及新品引進(jìn)協(xié)議3篇
- 二零二五年度青少年心理輔導(dǎo)服務(wù)合同3篇
- 二零二五版建筑玻璃及裝飾材料購(gòu)銷合同2篇
- 2024版軟件開(kāi)發(fā)項(xiàng)目居間合同
- 2025別墅裝修室內(nèi)外照明設(shè)計(jì)與安裝合同3篇
- 2025年度林業(yè)資源綜合管理與技術(shù)服務(wù)承包合同樣本3篇
- 二零二四年份版權(quán)轉(zhuǎn)讓與授權(quán)合同3篇
- 2025年度體育場(chǎng)館設(shè)施抵押融資合同范本3篇
- 2025年度數(shù)據(jù)中心冷卻系統(tǒng)安裝合同范本6篇
- 二零二五版城市綜合體項(xiàng)目施工監(jiān)管服務(wù)合同3篇
- 新型電力系統(tǒng)簡(jiǎn)介演示
- 特種設(shè)備行業(yè)團(tuán)隊(duì)建設(shè)工作方案
- 眼內(nèi)炎患者護(hù)理查房課件
- 肯德基經(jīng)營(yíng)策略分析報(bào)告總結(jié)
- 買(mǎi)賣(mài)合同簽訂和履行風(fēng)險(xiǎn)控制
- 中央空調(diào)現(xiàn)場(chǎng)施工技術(shù)總結(jié)(附圖)
- 水質(zhì)-濁度的測(cè)定原始記錄
- 數(shù)字美的智慧工業(yè)白皮書(shū)-2023.09
- -安規(guī)知識(shí)培訓(xùn)
- 2021-2022學(xué)年四川省成都市武侯區(qū)部編版四年級(jí)上冊(cè)期末考試語(yǔ)文試卷(解析版)
- 污水處理廠設(shè)備安裝施工方案
評(píng)論
0/150
提交評(píng)論