![2023-2024學年北京市海淀區(qū)第二十中學高一下數(shù)學期末復習檢測試題含解析_第1頁](http://file4.renrendoc.com/view2/M01/13/31/wKhkFmZlMGSAAbWvAAHoNR4xf-k688.jpg)
![2023-2024學年北京市海淀區(qū)第二十中學高一下數(shù)學期末復習檢測試題含解析_第2頁](http://file4.renrendoc.com/view2/M01/13/31/wKhkFmZlMGSAAbWvAAHoNR4xf-k6882.jpg)
![2023-2024學年北京市海淀區(qū)第二十中學高一下數(shù)學期末復習檢測試題含解析_第3頁](http://file4.renrendoc.com/view2/M01/13/31/wKhkFmZlMGSAAbWvAAHoNR4xf-k6883.jpg)
![2023-2024學年北京市海淀區(qū)第二十中學高一下數(shù)學期末復習檢測試題含解析_第4頁](http://file4.renrendoc.com/view2/M01/13/31/wKhkFmZlMGSAAbWvAAHoNR4xf-k6884.jpg)
![2023-2024學年北京市海淀區(qū)第二十中學高一下數(shù)學期末復習檢測試題含解析_第5頁](http://file4.renrendoc.com/view2/M01/13/31/wKhkFmZlMGSAAbWvAAHoNR4xf-k6885.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年北京市海淀區(qū)第二十中學高一下數(shù)學期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,則的終邊所在的象限為()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限2.已知一個三角形的三邊是連續(xù)的三個自然數(shù),且最大角是最小角的2倍,則該三角形的最小角的余弦值是()A. B.C. D.3.將函數(shù)y=sin2x的圖象向右平移A.在區(qū)間[-πB.在區(qū)間[5πC.在區(qū)間[-πD.在區(qū)間[π4.已知向量,,,則與的夾角為()A. B. C. D.5.在△ABC中,A=60°,AB=2,且△ABC的面積為,則BC的長為().A. B.2 C. D.6.在中,已知是邊上一點,,,則等于()A. B. C. D.7.在空間直角坐標系中,點P(3,4,5)關于平面的對稱點的坐標為()A.(?3,4,5) B.(?3,?4,5)C.(3,?4,?5) D.(?3,4,?5)8.已知,,,則a,b,c的大小關系為()A. B. C. D.9.數(shù)列中,若,,則()A.29 B.2563 C.2569 D.255710.在平面直角坐標系中,直線與x、y軸分別交于點、,記以點為圓心,半徑為r的圓與三角形的邊的交點個數(shù)為M.對于下列說法:①當時,若,則;②當時,若,則;③當時,M不可能等于3;④M的值可以為0,1,2,3,4,5.其中正確的個數(shù)為()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.設向量是兩個不共線的向量,若與共線,則_______.12.已知函數(shù),則的取值范圍是____13.下列五個正方體圖形中,是正方體的一條對角線,點M,N,P分別為其所在棱的中點,求能得出⊥面MNP的圖形的序號(寫出所有符合要求的圖形序號)______14.已知為等差數(shù)列,,,,則______.15.已有無窮等比數(shù)列的各項的和為1,則的取值范圍為__________.16.已知平面向量,,滿足:,且,則的最小值為____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某中學的高二(1)班男同學有45名,女同學有15名,老師按照分層抽樣的方法組建了一個4人的課外興趣小組.(1)求課外興趣小組中男、女同學的人數(shù);(2)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出1名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;(3)試驗結(jié)束后,第一次做試驗的同學得到的試驗數(shù)據(jù)為68,70,71,72,74,第二次做試驗的同學得到的試驗數(shù)據(jù)為69,70,70,72,74,請問哪位同學的實驗更穩(wěn)定?并說明理由.18.已知為數(shù)列的前項和,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.19.已知數(shù)列,.(1)若數(shù)列是等比數(shù)列,且,求數(shù)列的通項公式;(2)若數(shù)列是等差數(shù)列,且,數(shù)列滿足,當時,求的值.20.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)當時,求函數(shù)的最大值和最小值.21.等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)設,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由一全正二正弦三正切四余弦可得的終邊所在的象限為第二象限,故選B.考點:三角函數(shù)2、B【解析】
設的最大角為,最小角為,可得出,,由題意得出,由二倍角公式,利用正弦定理邊角互化思想以及余弦定理可得出關于的方程,求出的值,可得出的值.【詳解】設的最大角為,最小角為,可得出,,由題意得出,,所以,,即,即,將,代入得,解得,,,則,故選B.【點睛】本題考查利用正弦定理和余弦定理解三角形,解題時根據(jù)對稱思想設邊長可簡化計算,另外就是充分利用二倍角公式進行轉(zhuǎn)化是解本題的關鍵,綜合性較強.3、A【解析】
函數(shù)y=sin2x的圖象向右平移y=sin2kπ-π單調(diào)遞減區(qū)間:2kπ+π2≤2x-π3【詳解】本題考查了正弦型函數(shù)圖象的平移變換以及求正弦型函數(shù)的單調(diào)區(qū)間.4、D【解析】
直接利用向量的數(shù)量積轉(zhuǎn)化求解向量的夾角即可.【詳解】因為,所以與的夾角為.故選:D.【點睛】本題主要考查向量的夾角的運算,以及運用向量的數(shù)量積運算和向量的模.5、D【解析】
利用三角形面積公式列出關系式,把,已知面積代入求出的長,再利用余弦定理即可求出的長.【詳解】∵在中,,且的面積為,
∴,
解得:,
由余弦定理得:,
則.
故選D.【點睛】此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關鍵.6、A【解析】
利用向量的減法將3,進行分解,然后根據(jù)條件,進行對比即可得到結(jié)論【詳解】∵3,∴33,即43,則,∵λ,∴λ,故選A.【點睛】本題主要考查向量的基本定理的應用,根據(jù)向量的減法法則進行分解是解決本題的關鍵.7、A【解析】
由關于平面對稱的點的橫坐標互為相反數(shù),縱坐標和豎坐標相等,即可得解.【詳解】關于平面對稱的點的橫坐標互為相反數(shù),縱坐標和豎坐標相等,所以點P(3,4,5)關于平面的對稱點的坐標為(?3,4,5).故選A.【點睛】本題主要考查了空間點的對稱點的坐標求法,屬于基礎題.8、D【解析】
由,,,得解.【詳解】解:因為,,,所以,故選:D.【點睛】本題考查了指數(shù)冪,對數(shù)值的大小關系,屬基礎題.9、D【解析】
利用遞推關系,構(gòu)造等比數(shù)列,進而求得的表達式,即可求出,也就可以得到的值?!驹斀狻繑?shù)列中,若,,可得,所以是等比數(shù)列,公比為2,首項為5,所以,.【點睛】本題主要考查數(shù)列的通項公式的求法——構(gòu)造法。利用遞推關系,選擇合適的求解方法是解決問題的關鍵,常見的數(shù)列的通項公式的求法有:公式法,累加法,累乘法,構(gòu)造法,取倒數(shù)法等。10、B【解析】
作出直線,可得,,,分別考慮圓心和半徑的變化,結(jié)合圖形,即可得到所求結(jié)論.【詳解】作出直線,可得,,,①當時,若,當圓與直線相切,可得;當圓經(jīng)過點,即,則或,故①錯誤;②當時,若,圓,當圓經(jīng)過O時,,交點個數(shù)為2,時,交點個數(shù)為1,則,故②正確;③當時,圓,隨著的變化可得交點個數(shù)為1,2,0,不可能等于3,故③正確;④的值可以為0,1,2,3,4,不可以為5,故④錯誤.故選:B.【點睛】本題考查命題的真假判斷與應用,考查直線和圓的位置關系,考查分析能力和計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:∵向量,是兩個不共線的向量,不妨以,為基底,則,又∵共線,.考點:平面向量與關系向量12、【解析】
分類討論,去掉絕對值,利用函數(shù)的單調(diào)性,求得函數(shù)各段上的取值,進而得到函數(shù)的取值范圍,得到答案.【詳解】由題意,當時,函數(shù),此時函數(shù)為單調(diào)遞減函數(shù),所以最大值為,此時函數(shù)的取值當時,函數(shù),此時函數(shù)為單調(diào)遞減函數(shù),所以最大值為,最小值,所以函數(shù)的取值為當時,函數(shù),此時函數(shù)為單調(diào)遞增函數(shù),所以最大值為,此時函數(shù)的取值,綜上可知,函數(shù)的取值范圍是.【點睛】本題主要考查了分段函數(shù)的值域問題,其中解答中合理分類討論去掉絕對值,利用函數(shù)的單調(diào)性求得各段上的值域是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.13、①④⑤【解析】為了得到本題答案,必須對5個圖形逐一進行判別.對于給定的正方體,l位置固定,截面MNP變動,l與面MNP是否垂直,可從正、反兩方面進行判斷.在MN、NP、MP三條線中,若有一條不垂直l,則可斷定l與面MNP不垂直;若有兩條與l都垂直,則可斷定l⊥面MNP;若有l(wèi)的垂面∥面MNP,也可得l⊥面MNP.解法1作正方體ABCD-A1B1C1D1如附圖,與題設圖形對比討論.在附圖中,三個截面BA1D、EFGHKR和CB1D1都是對角線l(即AC1)的垂面.對比圖①,由MN∥BAl,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.對比圖②,由MN與面CB1D1相交,而過交點且與l垂直的直線都應在面CBlDl內(nèi),所以MN不垂直于l,從而l不垂直于面MNP.對比圖③,由MP與面BAlD相交,知l不垂直于MN,故l不垂直于面MNP.對比圖④,由MN∥BD,MP∥BA.知面MNP∥面BA1D,故l⊥面MNP.對比圖⑤,面MNP與面EFGHKR重合,故l⊥面MNP.綜合得本題的答案為①④⑤.解法2如果記正方體對角線l所在的對角截面為.各圖可討論如下:在圖①中,MN,NP在平面上的射影為同一直線,且與l垂直,故l⊥面MNP.事實上,還可這樣考慮:l在上底面的射影是MP的垂線,故l⊥MP;l在左側(cè)面的射影是MN的垂線,故l⊥MN,從而l⊥面MNP.在圖②中,由MP⊥面,可證明MN在平面上的射影不是l的垂線,故l不垂直于MN.從而l不垂直于面MNP.在圖③中,點M在上的射影是l的中點,點P在上的射影是上底面的內(nèi)點,知MP在上的射影不是l的垂線,得l不垂直于面MNP.在圖④中,平面垂直平分線段MN,故l⊥MN.又l在左側(cè)面的射影(即側(cè)面正方形的一條對角線)與MP垂直,從而l⊥MP,故l⊥面MNP.在圖⑤中,點N在平面上的射影是對角線l的中點,點M、P在平面上的射影分別是上、下底面對角線的4分點,三個射影同在一條直線上,且l與這一直線垂直.從而l⊥面MNP.至此,得①④⑤為本題答案.14、【解析】
由等差數(shù)列的前項和公式,代入計算即可.【詳解】已知為等差數(shù)列,且,,所以,解得或(舍)故答案為【點睛】本題考查了等差數(shù)列前項和公式的應用,屬于基礎題.15、【解析】
根據(jù)無窮等比數(shù)列的各項和表達式,將用公比表示,根據(jù)的范圍求解的范圍.【詳解】因為且,又,且,則.【點睛】本題考查無窮等比數(shù)列各項和的應用,難度一般.關鍵是將待求量與公比之間的關系找到,然后根據(jù)的取值范圍解決問題.16、-1【解析】
,,,由經(jīng)過向量運算得,知點在以為圓心,1為半徑的圓上,這樣,只要最小,就可化簡.【詳解】如圖,,則,設是中點,則,∵,∴,即,,記,則點在以為圓心,1為半徑的圓上,記,,注意到,因此當與反向時,最小,∴.∴最小值為-1.故答案為-1.【點睛】本題考查平面向量的數(shù)量積,解題關鍵是由已知得出點軌跡(讓表示的有向線段的起點都是原點)是圓,然后分析出只有最小時,才可能最?。畯亩玫浇忸}方法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)男、女同學的人數(shù)分別為3人,1人;(2);(3)第二位同學的實驗更穩(wěn)定,理由見解析【解析】
(1)設有名男同學,利用抽樣比列方程即可得解(2)列出基本事件總數(shù)為12,其中恰有一名女同學的有6種,利用古典概型概率公式計算即可(3)計算出兩位同學的實驗數(shù)據(jù)的平均數(shù)和方差,問題得解【詳解】(1)設有名男同學,則,∴,∴男、女同學的人數(shù)分別為3人,1人(2)把3名男同學和1名女同學記為,則選取兩名同學的基本事件有,,,,,,,,,,,共12種,其中恰有一名女同學的有6種,∴選出的兩名同學中恰有一名女同學的概率為(3),,因,所以第二位同學的實驗更穩(wěn)定.【點睛】本題主要考查了分層抽樣比例關系及古典概型概率計算公式,還考查了樣本數(shù)據(jù)的平均數(shù)及方差計算,考查方差與穩(wěn)定性的關系,屬于中檔題18、(1);(2).【解析】
(1)由即可求得通項公式;(2)由(1)中所求的,以及,可得,再用裂項求和求解前項和即可.【詳解】(1)當時,整理得,即數(shù)列是以首項為,公比為2的等比數(shù)列,故(2)由(1)得,,故=故數(shù)列的前項和.【點睛】本題考查由和之間的關系求解數(shù)列的通項公式,以及用裂項求和求解前項和,屬數(shù)列綜合基礎題.19、(1);(2).【解析】
(1)數(shù)列是公比為的等比數(shù)列,由等比數(shù)列的通項公式解方程可得首項和公比,即可得到所求通項;(2)數(shù)列是公差為的等差數(shù)列,由等差數(shù)列的通項公式解方程可得首項和公差,可得數(shù)列的通項,進而得到,再由指數(shù)的運算性質(zhì)和等差數(shù)列的求和公式,計算即可得到所求值.【詳解】解:(1)數(shù)列是公比為的等比數(shù)列,,,可得,,解得,,可得,;(2)數(shù)列是公差為的等差數(shù)列,,,可得,,解得,,則,,,即可得,可得,解得或(舍去).【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三農(nóng)村義務教育實施方案
- 珠寶鑒定與評估技術作業(yè)指導書
- 居民采暖供用熱合同
- 信息安全防護技術作業(yè)指導書
- 2025年毫州考貨運資格證考試內(nèi)容
- 2025年延安道路運輸從業(yè)資格證考試
- 2025年銀川貨車從業(yè)資格證考試試題
- 2025年襄陽道路客貨運輸從業(yè)資格證模擬考試下載
- 電力資源整合合同(2篇)
- 電力公司勞動合同范本(2篇)
- 基于AI的自動化日志分析與異常檢測
- 浙江省浙南名校聯(lián)盟2023-2024學年高二上學期期中聯(lián)考數(shù)學試題(原卷版)
- 戰(zhàn)略管理與倫理
- 如何構(gòu)建高效課堂課件
- 虛擬化與云計算技術應用實踐項目化教程 教案全套 第1-14周 虛擬化與云計算導論-騰訊云服務
- 徐金桂行政法與行政訴訟法新講義
- 瀝青拌合設備結(jié)構(gòu)認知
- 2023年北京高考政治真題試題及答案
- 復旦中華傳統(tǒng)體育課程講義05木蘭拳基本技術
- 北師大版五年級上冊數(shù)學教學課件第5課時 人民幣兌換
- 工程回訪記錄單
評論
0/150
提交評論