![2023-2024學年北京市海淀區(qū)重點初中數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁](http://file4.renrendoc.com/view4/M00/26/38/wKhkGGZlNHKALr-RAAIqyoF7vTs285.jpg)
![2023-2024學年北京市海淀區(qū)重點初中數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁](http://file4.renrendoc.com/view4/M00/26/38/wKhkGGZlNHKALr-RAAIqyoF7vTs2852.jpg)
![2023-2024學年北京市海淀區(qū)重點初中數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁](http://file4.renrendoc.com/view4/M00/26/38/wKhkGGZlNHKALr-RAAIqyoF7vTs2853.jpg)
![2023-2024學年北京市海淀區(qū)重點初中數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁](http://file4.renrendoc.com/view4/M00/26/38/wKhkGGZlNHKALr-RAAIqyoF7vTs2854.jpg)
![2023-2024學年北京市海淀區(qū)重點初中數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁](http://file4.renrendoc.com/view4/M00/26/38/wKhkGGZlNHKALr-RAAIqyoF7vTs2855.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年北京市海淀區(qū)重點初中數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知在等差數(shù)列中,的等差中項為,的等差中項為,則數(shù)列的通項公式()A. B.-1 C.+1 D.-32.若且,則的最小值是()A.6 B.12 C.24 D.163.我國古代數(shù)學名著九章算術記載:“芻甍者,下有袤有廣,而上有袤無丈芻,草也;甍,屋蓋也”翻譯為:“底面有長有寬為矩形,頂部只有長沒有寬為一條棱芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側視圖為等腰三角形則它的體積為A. B.160 C. D.644.已知實數(shù)滿足,則的最大值為()A. B. C. D.5.若某扇形的弧長為,圓心角為,則該扇形的半徑是()A. B. C. D.6.函數(shù)的零點所在的區(qū)間是()A. B. C. D.7.已知向量,,如果向量與平行,則實數(shù)的值為()A. B. C. D.8.閱讀如圖所示的程序,若運該程序輸出的值為100,則的面的條件應該是()A. B. C. D.9.函數(shù)的圖象的一條對稱軸方程是()A. B. C. D.10.已知等差數(shù)列共有10項,其中奇數(shù)項之和15,偶數(shù)項之和為30,則其公差是()A.5 B.4 C.3 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數(shù)列中,若,則______.12.已知等差數(shù)列的公差為2,若成等比數(shù)列,則________.13.函數(shù)在內的單調遞增區(qū)間為____.14.已知向量滿足,則15.已知,且是第一象限角,則的值為__________.16.三菱柱ABC-A1B1C1中,底面邊長和側棱長都相等,BAA1=CAA1=60°則異面直線AB1與BC1所成角的余弦值為____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,其中,,.(1)求的單調遞增區(qū)間;(2)在中,角,,所對的邊分別為,,,,,且向量與共線,求邊長和的值.18.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.19.某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經統(tǒng)計得頻率分布直方圖如圖所示.(1)經計算估計這組數(shù)據(jù)的中位數(shù);(2)現(xiàn)按分層抽樣從質量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內的概率.(3)某經銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出如下兩種收購方案:A:所有芒果以10元/千克收購;B:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?20.為了對某課題進行研究,用分層抽樣方法從三所高校,,的相關人員中,抽取若干人組成研究小組,有關數(shù)據(jù)見下表(單位:人).高校相關人員抽取人數(shù)A18B362C54(1)求,;(2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來自高校的概率.21.己知數(shù)列是等比數(shù)列,且公比為,記是數(shù)列的前項和.(1)若=1,>1,求的值;(2)若首項,,是正整數(shù),滿足不等式|﹣63|<62,且對于任意正整數(shù)都成立,問:這樣的數(shù)列有幾個?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:由于數(shù)列是等差數(shù)列,所以的等差中項是,故有,又有的等差中項是,所以,從而等差數(shù)列的公差,因此其通項公式為,故選D.考點:等差數(shù)列.2、D【解析】試題分析:,當且僅當時等號成立,所以最小值為16考點:均值不等式求最值3、A【解析】
分析:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù)可得其體積.詳解:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù),求出棱錐與棱柱的體積相加即可,,故選A.點睛:本題利用空間幾何體的三視圖重點考查學生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側視圖,確定組合體的形狀.4、A【解析】
由原式,明顯考查斜率的幾何意義,故上下同除以得,再畫圖分析求得的取值范圍,再用基本不等式求解即可.【詳解】所求式,上下同除以得,又的幾何意義為圓上任意一點到定點的斜率,由圖可得,當過的直線與圓相切時取得臨界條件.當過坐標為時相切為一個臨界條件,另一臨界條件設,化成一般式得,因為圓與直線相切,故圓心到直線的距離,所以,,解得,故.設,則,又,故,當時取等號.故,故選A.【點睛】本題主要考查斜率的幾何意義,基本不等式的用法等.注意求斜率時需要設點斜式,利用圓心到直線的距離等于半徑列式求得斜率,在用基本不等式時要注意取等號的條件.5、D【解析】
由扇形的弧長公式列方程得解.【詳解】設扇形的半徑是,由扇形的弧長公式得:,解得:故選D【點睛】本題主要考查了扇形的弧長公式,考查了方程思想,屬于基礎題.6、B【解析】
根據(jù)零點存在性定理即可求解.【詳解】由函數(shù),則,,故函數(shù)的零點在區(qū)間上.故選:B【點睛】本題考查了利用零點存在性定理判斷零點所在的區(qū)間,需熟記定理內容,屬于基礎題.7、B【解析】
根據(jù)坐標運算求出和,利用平行關系得到方程,解方程求得結果.【詳解】由題意得:,,解得:本題正確選項:【點睛】本題考查向量平行的坐標表示問題,屬于基礎題.8、D【解析】
根據(jù)輸出值和代碼,可得輸出的最高項的值,進而結合當型循環(huán)結構的特征得判斷框內容.【詳解】根據(jù)循環(huán)體,可知因為輸出的值為100,所以由等差數(shù)列求和公式可知求和到19停止,結合當型循環(huán)結構特征,可知滿足條件時返回執(zhí)行循環(huán)體,因而判斷框內的內容為,故選:D.【點睛】本題考查了當型循環(huán)結構的代碼應用,根據(jù)輸出值選擇條件,屬于基礎題.9、A【解析】
由,得,,故選A.10、C【解析】,故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用等差中項的性質可求出的值.【詳解】由等差中項的性質可得,解得.故答案為:.【點睛】本題考查利用等差中項的性質求項的值,考查計算能力,屬于基礎題.12、【解析】
利用等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,求出a1,即可求出a1.【詳解】∵等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,
∴(a1+4)1=a1(a1+2),
∴a1=-8,
∴a1=-2.
故答案為-2..【點睛】本題考查等比數(shù)列的性質,考查等差數(shù)列的通項,考查學生的計算能力,屬基礎題..13、【解析】
將函數(shù)進行化簡為,求出其單調增區(qū)間再結合,可得結論.【詳解】解:,遞增區(qū)間為:,可得,在范圍內單調遞增區(qū)間為。故答案為:.【點睛】本題考查了正弦函數(shù)的單調區(qū)間,屬于基礎題。14、【解析】試題分析:=,又,,代入可得8,所以考點:向量的數(shù)量積運算.15、;【解析】
利用兩角和的公式把題設展開后求得的值,進而利用的范圍判斷的范圍,利用同角三角函數(shù)的基本關系求得的值,最后利用誘導公式和對原式進行化簡,把的值和題設條件代入求解即可.【詳解】,,即,,兩邊同時平方得到:,解得,是第一象限角,,得,,即為第一或第四象限,,.故答案為:.【點睛】本題考查了兩角差的余弦公式、誘導公式以及同角三角函數(shù)的基本關系,需熟記三角函數(shù)中的公式,屬于中檔題.16、【解析】
如圖設設棱長為1,則,因為底面邊長和側棱長都相等,且所以,所以,,,設異面直線的夾角為,所以.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)化簡得,代入,求得增區(qū)間為;(2)由求得,余弦定理得.因為向量與共線,所以,由正弦定理得,解得.試題解析:(1)由題意知,,在上單調遞增,令,得,的單調遞增區(qū)間.(2),又,即.,由余弦定理得.因為向量與共線,所以,由正弦定理得.考點:三角函數(shù)恒等變形、解三角形.18、(1)【解析】
(1)利用同角的平方關系求cos(α-β)的值;(2)利用求出,再求的值.【詳解】(1)因為,所以cos(α-β).(2)因為cosα=,所以,所以,因為β∈(0,),所以.【點睛】本題主要考查同角的三角函數(shù)的關系求值,考查差角的余弦,意在考查學生對這些知識的理解掌握水平,屬于基礎題.19、(1)中位數(shù)為268.75;(2);(3)選B方案【解析】
(1)根據(jù)中位數(shù)左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所以中位數(shù)在內,設中位數(shù)為,則有,解得.故中位數(shù)為268.75.(2)設質量在內的4個芒果分別為,,,,質量在內的2個芒果分別為,.從這6個芒果中選出3個的情況共有,,,,,,,,,,,,,,,,,,,,共計20種,其中恰有一個在內的情況有,,,,,,,,,,,,共計12種,因此概率.(3)方案A:元.方案B:由題意得低于250克:元;高于或等于250克元.故總計元,由于,故B方案獲利更多,應選B方案.【點睛】本題主要考查了頻率分布直方圖的用法以及古典概型的方法,同時也考查了根據(jù)樣本估計總體的方法等.屬于中等題型.20、(1),(2)【解析】
(1)根據(jù)分層抽樣的概念,可得,求解即可;(2)分別記從高校抽取的2人為,,從高校抽取的3人為,,,先列出從5人中選2人作專題發(fā)言的基本事件,再列出2人都來自高校的基本事件,進而求出概率【詳解】(1)由題意可得,所以,(2)記從高校抽取的2人為,,從高校抽取的3人為,,,則從高校,抽取的5人中選2人作專題發(fā)言的基本事件有,,,,,,,,,共10種設選中的2人都來自高校的事件為,則包含的基本事件有,,共3種因此,故選中的2人都來自高校的概率為【點睛】本題考查分層抽樣,考查古典概型,屬于基礎題21、(1);(2)114【解析】
(1)利用等比數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學勞衛(wèi)部申請書
- 入禮儀部申請書
- 生活部申請書800字
- 倉庫員工轉正申請書
- 退學生會申請書2000字
- DB2203-T 1.1-2022 地理標志證明商標產品 第1部分:一級原糧玉米
- DB2111-T 0033-2024 設施秋延堿地番茄病毒病綜合防控技術規(guī)程
- 2021北師大版四年級第二學期數(shù)學單元觀察物體測試卷-(含答案)
- 北師大版數(shù)學四年級第五單元《方向與位置》知識點及練習有答案
- 紡織品外貿合同(2篇)
- 2024版金礦居間合同協(xié)議書
- 2025內蒙古匯能煤化工限公司招聘300人高頻重點提升(共500題)附帶答案詳解
- 舊金山china town中文介紹課件
- 初中英語 滬教牛津版 9A U7-1 Reading Tom Sawyer paints the fence 課件
- 血液科品管圈匯報-PPT課件
- 騙提個人住房公積金檢討書
- E-learning平臺使用手冊(培訓管理員版)
- 管道保溫及面積計算公式
- 江西省日照小時數(shù)
- 盧曹康-高樁板樁碼頭(2)
- 家譜電子版模板(共4頁)
評論
0/150
提交評論