2023-2024學年安徽定遠重點中學高一數(shù)學第二學期期末預測試題含解析_第1頁
2023-2024學年安徽定遠重點中學高一數(shù)學第二學期期末預測試題含解析_第2頁
2023-2024學年安徽定遠重點中學高一數(shù)學第二學期期末預測試題含解析_第3頁
2023-2024學年安徽定遠重點中學高一數(shù)學第二學期期末預測試題含解析_第4頁
2023-2024學年安徽定遠重點中學高一數(shù)學第二學期期末預測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023-2024學年安徽定遠重點中學高一數(shù)學第二學期期末預測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用區(qū)間表示不超過的最大整數(shù),如,設,若方程有且只有3個實數(shù)根,則正實數(shù)的取值范圍為()A. B. C. D.2.若實數(shù)滿足約束條件,則的最大值為()A.9 B.7 C.6 D.33.如圖是正方體的平面展開圖,則在這個正方體中:①與平行②與是異面直線③與成角

④與是異面直線以上四個命題中,正確命題的個數(shù)是()A.1 B.2 C.3 D.44.若函數(shù),則的值為()A. B. C. D.5.在中,所對的邊分別為,若,,,則()A. B. C.1 D.36.下列說法正確的是()A.小于的角是銳角 B.鈍角是第二象限的角C.第二象限的角大于第一象限的角 D.若角與角的終邊相同,則7.不等式x2+ax+4>0對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()A.(﹣4,4) B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,+∞) D.8.已知等比數(shù)列的公比,該數(shù)列前9項的乘積為1,則()A.8 B.16 C.32 D.649.在等差數(shù)列中,,則的值()A. B. C. D.10.在各項均為正數(shù)的數(shù)列中,對任意都有.若,則等于()A.256 B.510 C.512 D.1024二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角的對邊分別為,若,則_______.(僅用邊表示)12.角的終邊經(jīng)過點,則___________________.13.已知數(shù)列滿足且,則____________.14.設,其中,則的值為________.15.已知扇形的圓心角為,半徑為5,則扇形的弧長_________.16.函數(shù)的最小值是.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在平面直角坐標系中,橢圓的左、右焦點分別為,,為橢圓上一點,且垂直于軸,連結(jié)并延長交橢圓于另一點,設.(1)若點的坐標為,求橢圓的方程及的值;(2)若,求橢圓的離心率的取值范圍.18.如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明:;(2)求三棱錐的體積.19.已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若,證明:函數(shù)必有局部對稱點;(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點,求實數(shù)的取值范圍;(3)若函數(shù)在上有局部對稱點,求實數(shù)的取值范圍.20.已知,為常數(shù),且,,.(I)若方程有唯一實數(shù)根,求函數(shù)的解析式.(II)當時,求函數(shù)在區(qū)間上的最大值與最小值.(III)當時,不等式恒成立,求實數(shù)的取值范圍.21.在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由方程的根與函數(shù)交點的個數(shù)問題,結(jié)合數(shù)形結(jié)合的數(shù)學思想方法,作圖觀察y={x}的圖象與y=﹣kx+1的圖象有且只有3個交點時k的取值范圍,即可得解.【詳解】方程{x}+kx﹣1=0有且只有3個實數(shù)根等價于y={x}的圖象與y=﹣kx+1的圖象有且只有3個交點,當0≤x<1時,{x}=x,當1≤x<2時,{x}=x﹣1,當2≤x<3時,{x}=x﹣2,當3≤x<4時,{x}=x﹣3,以此類推如上圖所示,實數(shù)k的取值范圍為:k,即實數(shù)k的取值范圍為:(,],故選A.【點睛】本題考查了方程的根與函數(shù)交點的個數(shù)問題,數(shù)形結(jié)合的數(shù)學思想方法,屬中檔題.2、A【解析】由約束條件作出可行域如圖,聯(lián)立,解得,化目標函數(shù)為,由圖可知,當直線過時,直線在軸上的截距最大,有最大值為,故選A.【方法點晴】本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.3、B【解析】

把平面展開圖還原原幾何體,再由棱柱的結(jié)構(gòu)特征及異面直線定義、異面直線所成角逐一核對四個命題得答案.【詳解】把平面展開圖還原原幾何體如圖:由正方體的性質(zhì)可知,與異面且垂直,故①錯誤;與平行,故②錯誤;連接,則,為與所成角,連接,可知為正三角形,則,故③正確;由異面直線的定義可知,與是異面直線,故④正確.∴正確命題的個數(shù)是2個.故選:B.【點睛】本題考查棱柱的結(jié)構(gòu)特征,考查異面直線定義及異面直線所成角,是中檔題.4、D【解析】

根據(jù)分段函數(shù)的定義域與函數(shù)解析式的關系,代值進行計算即可.【詳解】解:由已知,又,又,所以:.

故選:D.【點睛】本題考查了分段函數(shù)的函數(shù)值計算問題,抓住定義域的范圍,屬于基礎題.5、A【解析】

利用三角形內(nèi)角和為,得到,利用正弦定理求得.【詳解】因為,,所以,在中,,所以,故選A.【點睛】本題考查三角形內(nèi)角和及正弦定理的應用,考查基本運算求解能力.6、B【解析】

可通過舉例的方式驗證選項的對錯.【詳解】A:負角不是銳角,比如“”的角,故錯誤;B:鈍角范圍是“”,是第二象限的角,故正確;C:第二象限角取“”,第一象限角取“”,故錯誤;D:當角與角的終邊相同,則.故選B.【點睛】本題考查任意角的概念,難度較易.7、A【解析】

根據(jù)二次函數(shù)的性質(zhì)求解.【詳解】不等式x2+ax+4>0對任意實數(shù)x恒成立,則,∴.故選A.【點睛】本題考查一元二次不等式恒成立問題,解題時可借助二次函數(shù)的圖象求解.8、B【解析】

先由數(shù)列前9項的乘積為1,結(jié)合等比數(shù)列的性質(zhì)得到,從而可求出結(jié)果.【詳解】由已知,又,所以,即,所以,,故選B.【點睛】本題主要考查等比數(shù)列的性質(zhì)以及等比數(shù)列的基本量計算,熟記等比數(shù)列的性質(zhì)與通項公式即可,屬于??碱}型.9、B【解析】

根據(jù)等差數(shù)列的性質(zhì),求得,再由,即可求解.【詳解】根據(jù)等差數(shù)列的性質(zhì),可得,即,則,故選B.【點睛】本題主要考查了等差數(shù)列的性質(zhì),以及特殊角的三角函數(shù)值的計算,著重考查了推理與運算能力,屬于基礎題.10、C【解析】

因為,所以,則因為數(shù)列的各項均為正數(shù),所以所以,故選C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接利用正弦定理和三角函數(shù)關系式的變換的應用求出結(jié)果.【詳解】由正弦定理,結(jié)合可得,即,即,從而.【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變換,正弦定理余弦定理和三角形面積的應用,主要考察學生的運算能力和轉(zhuǎn)換能力,屬于基礎題型.12、【解析】

先求出到原點的距離,再利用正弦函數(shù)定義求解.【詳解】因為,所以到原點距離,故.故答案為:.【點睛】設始邊為的非負半軸,終邊經(jīng)過任意一點,則:13、【解析】

由題得為等差數(shù)列,得,則可求【詳解】由題:為等差數(shù)列且首項為2,則,所以.故答案為:2550【點睛】本題考查等差數(shù)列的定義,準確計算是關鍵,是基礎題14、【解析】

由兩角差的正弦公式以及誘導公式,即可求出的值.【詳解】,所以,因為,故.【點睛】本題主要考查兩角差的正弦公式的逆用以及誘導公式的應用.15、【解析】

根據(jù)扇形的弧長公式進行求解即可.【詳解】∵扇形的圓心角α,半徑為r=5,∴扇形的弧長l=rα5.故答案為:.【點睛】本題主要考查扇形的弧長公式的計算,熟記弧長公式是解決本題的關鍵,屬于基礎題.16、3【解析】試題分析:考點:基本不等式.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)把的坐標代入方程得到,結(jié)合解出后可得標準方程.求出直線的方程,聯(lián)立橢圓方程和直線方程后可求的坐標,故可得的值.(2)因,故可用表示的坐標,利用它在橢圓上可得與的關系,化簡后可得與離心率的關系,由的范圍可得的范圍.【詳解】(1)因為垂直于軸,且點的坐標為,所以,,解得,,所以橢圓的方程為.所以,直線的方程為,將代入橢圓的方程,解得,所以.(2)因為軸,不妨設在軸上方,,.設,因為在橢圓上,所以,解得,即.(方法一)因為,由得,,,解得,,所以.因為點在橢圓上,所以,即,所以,從而.因為,所以.解得,所以橢圓的離心率的取值范圍.【點睛】求橢圓的標準方程,關鍵是基本量的確定,方法有待定系數(shù)法、定義法等.圓錐曲線中的離心率的計算或范圍問題,關鍵是利用題設條件構(gòu)建關于的一個等式關系或不等式關系,其中不等式關系的構(gòu)建需要利用題設中的范圍、坐標的范圍、幾何量的范圍或點的位置等.18、(1)見解析;(2)【解析】

(1)以A為坐標原點,建立如圖所示的空間直角坐標系,求出BE,DC的方向向量,根據(jù)?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【詳解】(1)∵底面,,以為坐標原點,建立如圖所示的空間直角坐標系,∵,,點為棱的中點.∴(1,0,0),(2,2,0),(0,2,0),(0,0,2),(1,1,1)∴=(0,1,1),=(2,0,0),∵?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【點睛】本題考查了空間線面垂直的判定,利用了向量法,也考查了等體積法求體積,屬于中檔題.19、(1)見解析;(2);(3)【解析】

試題分析:(1)利用題中所給的定義,通過二次函數(shù)的判別式大于0,證明二次函數(shù)有局部對稱點;(2)利用方程有解,通過換元,轉(zhuǎn)化為打鉤函數(shù)有解問題,利用函數(shù)的圖象,確定實數(shù)c的取值范圍;(3)利用方程有解,通過換元,轉(zhuǎn)化為二次函數(shù)在給定區(qū)間有解,建立不等式組,通過解不等式組,求得實數(shù)的取值范圍.試題解析:(1)由得=,代入得,=,得到關于的方程=).其中,由于且,所以恒成立,所以函數(shù)=)必有局部對稱點.(2)方程=在區(qū)間上有解,于是,設),,,其中,所以.(3),由于,所以=.于是=(*)在上有解.令),則,所以方程(*)變?yōu)?在區(qū)間內(nèi)有解,需滿足條件:.即,,化簡得.20、(I);(II);;(III).【解析】

(I)根據(jù)方程ax2+(b-1)x=0有唯一解,以及列方程求解即可;(II)根據(jù)二次函數(shù)的性質(zhì),函數(shù)的單調(diào)性,即可求得求得最值,(III)分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值即可.【詳解】∵,∴,∴.(I)方程有唯一實數(shù)根,即方程有唯一解,∴,解得∴(II)∵,∴,,若,若.(III)解法一、當時,不等式恒成立,即:在區(qū)間上恒成立,設,顯然函數(shù)在區(qū)間上是減函數(shù),,當且僅當時,不等式在區(qū)間上恒成立,因此.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論