安徽省舒城桃溪2024屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第1頁
安徽省舒城桃溪2024屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第2頁
安徽省舒城桃溪2024屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第3頁
安徽省舒城桃溪2024屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第4頁
安徽省舒城桃溪2024屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省舒城桃溪2024屆高一下數(shù)學(xué)期末調(diào)研試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)直線l1:3x+2ay-5=0,l2:3a-1x-ay-2=0,若l1與A.-16 B.0或2.在中,a、b分別為內(nèi)角A、B的對邊,如果,,,則()A. B. C. D.3.已知點在第四象限,則角在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某賽季甲、乙兩名籃球運動員5場比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則下列結(jié)論錯誤的是()A.B.甲得分的方差是736C.乙得分的中位數(shù)和眾數(shù)都為26D.乙得分的方差小于甲得分的方差5.設(shè)實數(shù)滿足約束條件,則的最大值為()A. B.4 C.5 D.6.的弧度數(shù)是()A. B. C. D.7.已知向量,,則在方向上的投影為()A. B. C. D.8.如果,那么下列不等式錯誤的是()A. B.C. D.9.向量,,若,則()A.2 B. C. D.10.()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的反函數(shù)為____________.12.已知為直線上一點,過作圓的切線,則切線長最短時的切線方程為__________.13.當實數(shù)a變化時,點到直線的距離的最大值為_______.14.已知三個頂點的坐標分別為,若⊥,則的值是______.15.設(shè),,,,則數(shù)列的通項公式=.16.設(shè)為等差數(shù)列的前n項和,,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角所對的邊分別為.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.18.在中,,且的邊a,b,c所對的角分別為A,B,C.(1)求的值;(2)若,試求周長的最大值.19.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求內(nèi)角B的大小;(2)設(shè),,的最大值為5,求k的值.20.已知圓C的方程是(x-1)2+(y-1)2=4,直線l的方程為y=x+m,求當m為何值時,(1)直線平分圓;(2)直線與圓相切.21.已知平面向量滿足:(1)求與的夾角;(2)求向量在向量上的投影.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

通過兩條直線平行的關(guān)系,可建立關(guān)于a的方程,解方程求得結(jié)果?!驹斀狻縧1//解得:a=0或-本題正確選項:B【點睛】本題考察直線位置關(guān)系問題。關(guān)鍵是通過兩直線平行,得到:A12、A【解析】

先求出再利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:A.【點睛】本題注意考查正弦定理的應(yīng)用,屬于中檔題.正弦定理主要有三種應(yīng)用:求邊和角、邊角互化、外接圓半徑.3、B【解析】

根據(jù)第四象限內(nèi)點的坐標特征,再根據(jù)正弦值、正切值的正負性直接求解即可.【詳解】因為點在第四象限,所以有:是第二象限內(nèi)的角.故選:B【點睛】本題考查了正弦值、正切值的正負性的判斷,屬于基礎(chǔ)題.4、B【解析】

根據(jù)題意,依次分析選項,綜合即可得答案.【詳解】根據(jù)題意,依次分析選項:對于A,甲得分的極差為32,30+x﹣6=32,解得:x=8,A正確,對于B,甲得分的平均值為,其方差為,B錯誤;對于C,乙的數(shù)據(jù)為:12、25、26、26、31,其中位數(shù)、眾數(shù)都是26,C正確,對于D,乙得分比較集中,則乙得分的方差小于甲得分的方差,D正確;故選:B.【點睛】本題考查莖葉圖的應(yīng)用,涉及數(shù)據(jù)極差、平均數(shù)、中位數(shù)、眾數(shù)、方差的計算,屬于基礎(chǔ)題.5、A【解析】

作出可行域,作出目標函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖內(nèi)部(含邊界),作直線,向上平移直線,增大,當直線過點時,得最大值為,故選:A.【點睛】本題考查簡單的線性規(guī)劃,解題關(guān)鍵是作出可行域和目標函數(shù)對應(yīng)的直線.6、B【解析】

由角度與弧度的關(guān)系轉(zhuǎn)化.【詳解】-150.故選:B.【點睛】本題考查角度與弧度的互化,解題關(guān)鍵是掌握關(guān)系式:.7、D【解析】

直接利用向量的數(shù)量積和向量的投影的定義,即可求解,得到答案.【詳解】由題意,向量,,則在方向上的投影為:.故選D.【點睛】本題主要考查了平面向量的數(shù)量積的應(yīng)用,其中解答中熟記向量的數(shù)量積的運算公式,準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、A【解析】

利用不等式的性質(zhì)或比較法對各選項中不等式的正誤進行判斷.【詳解】,,,則,,可得出,因此,A選項錯誤,故選:A.【點睛】本題考查判斷不等式的正誤,常利用不等式的性質(zhì)或比較法來進行判斷,考查推理能力,屬于基礎(chǔ)題.9、C【解析】試題分析:,,得得,故選C.考點:向量的垂直運算,向量的坐標運算.10、A【解析】

將根據(jù)誘導(dǎo)公式化為后,利用兩角和的正弦公式可得.【詳解】.故選:A【點睛】本題考查了誘導(dǎo)公式,考查了兩角和的正弦公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由原函數(shù)的解析式解出自變量x的解析式,再把x和y交換位置,即可得到結(jié)果.【詳解】解:記∴故反函數(shù)為:【點睛】本題考查函數(shù)與反函數(shù)的定義,求反函數(shù)的方法和步驟,注意反函數(shù)的定義域是原函數(shù)的值域.12、或【解析】

利用切線長最短時,取最小值找點:即過圓心作直線的垂線,求出垂足點.就切線的斜率是否存在分類討論,結(jié)合圓心到切線的距離等于半徑得出切線的方程.【詳解】設(shè)切線長為,則,所以當切線長取最小值時,取最小值,過圓心作直線的垂線,則點為垂足點,此時,直線的方程為,聯(lián)立,得,點的坐標為.①若切線的斜率不存在,此時切線的方程為,圓心到該直線的距離為,合乎題意;②若切線的斜率存在,設(shè)切線的方程為,即.由題意可得,化簡得,解得,此時,所求切線的方程為,即.綜上所述,所求切線方程為或,故答案為或.【點睛】本題考查過點的圓的切線方程的求解,考查圓的切線長相關(guān)問題,在過點引圓的切線問題時,要對直線的斜率是否存在進行分類討論,另外就是將直線與圓相切轉(zhuǎn)化為圓心到直線的距離等于半徑長,考查分析問題與解決問題的能力,屬于中等題.13、【解析】

由已知直線方程求得直線所過定點,再由兩點間的距離公式求解.【詳解】由直線,得,聯(lián)立,解得.直線恒過定點,到直線的最大距離.故答案為:.【點睛】本題考查點到直線距離最值的求法,考查直線的定點問題,是基礎(chǔ)題.14、【解析】

求出,再利用,求得.【詳解】,因為⊥,所以,解得:.【點睛】本題考查向量的坐標表示、數(shù)量積運算,要注意向量坐標與點坐標的區(qū)別.15、2n+1【解析】由條件得,且,所以數(shù)列是首項為4,公比為2的等比數(shù)列,則.16、54.【解析】

設(shè)首項為,公差為,利用等差數(shù)列的前n項和公式列出方程組,解方程求解即可.【詳解】設(shè)首項為,公差為,由題意,可得解得所以.【點睛】本題主要考查了等差數(shù)列的前n項和公式,解方程的思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ).=.(Ⅱ).【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進而得到,由轉(zhuǎn)化為,求出,進而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:在中,因為,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值為,的值為.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.18、(1)(2)【解析】

(1)利用三角公式化簡得到答案.(2)利用余弦定理得到,再利用均值不等式得到,得到答案.【詳解】(1)原式(2),時等號成立.周長的最大值為【點睛】本題考查了三角恒等變換,余弦定理,均值不等式,周長的最大值,意在考查學(xué)生解決問題的能力.19、(1),(2)【解析】

解:(1)(3分)又在中,,所以,則………(5分)(2),.………………(8分)又,所以,所以.所以當時,的最大值為.………(10分)………(12分)20、(1)m=0;(2)m=±2.【解析】試題分析:(1)直線平分圓,即直線過圓心,將圓心坐標代入直線方程可得m值(2)根據(jù)圓心到直線距離等于半徑列方程,解得m值試題解析:解:(1)∵直線平分圓,所以圓心在直線y=x+m上,即有m=0.(2)∵直線與圓相切,所以圓心到直線的距離等于半徑,∴d==2,m=±2.即m=±2時,直線l與圓相切.點睛:判斷直線與圓的位置關(guān)系的常見方法(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用Δ判斷.(3)點與圓的位置關(guān)系法:若直線恒過定點且定點在圓內(nèi),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論