版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆上海市靜安區(qū)高一下數(shù)學(xué)期末檢測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知不等式的解集是,則()A. B.1 C. D.32.已知點(diǎn)均在球上,,若三棱錐體積的最大值為,則球的體積為A. B. C.32 D.3.將正整數(shù)排列如下:123456789101112131415……則圖中數(shù)出現(xiàn)在()A.第行列 B.第行列 C.第行列 D.第行列4.若,則以下不等式一定成立的是()A. B. C. D.5.已知正實(shí)數(shù)滿足,則的最小值()A.2 B.3 C.4 D.6.若三點(diǎn)共線,則()A.13 B. C.9 D.7.設(shè)均為正數(shù),且,,.則()A. B. C. D.8.已知直線過(guò)點(diǎn)且與直線垂直,則該直線方程為()A. B.C. D.9.設(shè)等差數(shù)列{an}的前n項(xiàng)的和Sn,若a2+a8=6,則S9=()A.3 B.6 C.27 D.5410.已知函數(shù)是奇函數(shù),若,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知實(shí)數(shù)滿足,則的最小值為_______.12.已知無(wú)窮等比數(shù)列滿足:對(duì)任意的,,則數(shù)列公比的取值集合為__________.13.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若,,b=1,則_____________14.已知關(guān)于實(shí)數(shù)x,y的不等式組構(gòu)成的平面區(qū)域?yàn)?,若,使得恒成立,則實(shí)數(shù)m的最小值是______.15.某公司有大量客戶,且不同齡段客戶對(duì)其服務(wù)的評(píng)價(jià)有較大差異.為了解客戶的評(píng)價(jià),該公司準(zhǔn)備進(jìn)行抽樣調(diào)查,可供選擇的抽樣方法有簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣,則最合適的抽樣方法是________.16.一個(gè)圓錐的側(cè)面積為,底面積為,則該圓錐的體積為________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知圓過(guò)兩點(diǎn),,且圓心在直線上.(1)求圓的標(biāo)準(zhǔn)方程;(2)求過(guò)點(diǎn)且與圓相切的直線方程.18.某算法框圖如圖所示.(1)求函數(shù)的解析式及的值;(2)若在區(qū)間內(nèi)隨機(jī)輸入一個(gè)值,求輸出的值小于0的概率.19.已知的外接圓的半徑為,內(nèi)角,,的對(duì)邊分別為,,,又向量,,且.(1)求角;(2)求三角形的面積的最大值并求此時(shí)的周長(zhǎng).20.如圖是某地某公司名員工的月收入后的直方圖.根據(jù)直方圖估計(jì):(1)該公司月收入在元到元之間的人數(shù);(2)該公司員工的月平均收入.21.計(jì)算:(1)(2)(3)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
的兩個(gè)解為-1和2.【詳解】【點(diǎn)睛】函數(shù)零點(diǎn)、一元二次等式的解、函數(shù)與x軸的交點(diǎn)之間的相互轉(zhuǎn)換。2、A【解析】
設(shè)是的外心,則三棱錐體積最大時(shí),平面,球心在上.由此可計(jì)算球半徑.【詳解】如圖,設(shè)是的外心,則三棱錐體積最大時(shí),平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,設(shè)球半徑為,則由得,解得,∴球體積為.故選A.【點(diǎn)睛】本題考查球的體積,關(guān)鍵是確定球心位置求出球的半徑.3、B【解析】
計(jì)算每行首個(gè)數(shù)字的通項(xiàng)公式,再判斷出現(xiàn)在第幾列,得到答案.【詳解】每行的首個(gè)數(shù)字為:1,2,4,7,11…利用累加法:計(jì)算知:數(shù)出現(xiàn)在第行列故答案選B【點(diǎn)睛】本題考查了數(shù)列的應(yīng)用,計(jì)算首數(shù)字的通項(xiàng)公式是解題的關(guān)鍵.4、C【解析】
利用不等式的運(yùn)算性質(zhì)分別判斷,正確的進(jìn)行證明,錯(cuò)誤的舉出反例.【詳解】沒有確定正負(fù),時(shí),,所以不選A;當(dāng)時(shí),,所以不選B;當(dāng)時(shí),,所以不選D;由,不等式成立.故選C.【點(diǎn)睛】本題考查不等式的運(yùn)算性質(zhì),比較法證明不等式,屬于基本題.5、B【解析】
,當(dāng)且僅當(dāng),即,時(shí)的最小值為3.故選B.點(diǎn)睛:本題主要考查基本不等式.在用基本不等式求最值時(shí),應(yīng)具備三個(gè)條件:一正二定三相等.①一正:關(guān)系式中,各項(xiàng)均為正數(shù);②二定:關(guān)系式中,含變量的各項(xiàng)的和或積必須有一個(gè)為定值;③三相等:含變量的各項(xiàng)均相等,取得最值.6、D【解析】
根據(jù)三點(diǎn)共線,有成立,解方程即可.【詳解】因?yàn)槿c(diǎn)共線,所以有成立,因此,故本題選D.【點(diǎn)睛】本題考查了斜率公式的應(yīng)用,考查了三點(diǎn)共線的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.7、A【解析】試題分析:在同一坐標(biāo)系中分別畫出,,的圖象,與的交點(diǎn)的橫坐標(biāo)為,與的圖象的交點(diǎn)的橫坐標(biāo)為,與的圖象的交點(diǎn)的橫坐標(biāo)為,從圖象可以看出.考點(diǎn):指數(shù)函數(shù)、對(duì)數(shù)函數(shù)圖象和性質(zhì)的應(yīng)用.【方法點(diǎn)睛】一般一個(gè)方程中含有兩個(gè)以上的函數(shù)類型,就要考慮用數(shù)形結(jié)合求解,在同一坐標(biāo)系中畫出兩函數(shù)圖象的交點(diǎn),函數(shù)圖象的交點(diǎn)的橫坐標(biāo)即為方程的解.8、A【解析】
根據(jù)垂直關(guān)系求出直線斜率為,再由點(diǎn)斜式寫出直線?!驹斀狻坑芍本€與直線垂直,可知直線斜率為,再由點(diǎn)斜式可知直線為:即.故選A.【點(diǎn)睛】本題考查兩直線垂直,屬于基礎(chǔ)題。9、C【解析】
利用等差數(shù)列的性質(zhì)和求和公式,即可求得的值,得到答案.【詳解】由題意,等差數(shù)列的前n項(xiàng)的和,由,根據(jù)等差數(shù)列的性質(zhì),可得,所以,故選:C.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì),以及等差數(shù)列的前n項(xiàng)和公式的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、C【解析】
由題意首先求得m的值,然后結(jié)合函數(shù)的性質(zhì)求解不等式即可.【詳解】函數(shù)為奇函數(shù),則恒成立,即恒成立,整理可得:,據(jù)此可得:,即恒成立,據(jù)此可得:.函數(shù)的解析式為:,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故奇函數(shù)是定義域內(nèi)的單調(diào)遞增函數(shù),不等式即,據(jù)此有:,由函數(shù)的單調(diào)性可得:,求解不等式可得的取值范圍是.本題選擇C選項(xiàng).【點(diǎn)睛】對(duì)于求值或范圍的問題,一般先利用函數(shù)的奇偶性得出區(qū)間上的單調(diào)性,再利用其單調(diào)性脫去函數(shù)的符號(hào)“f”,轉(zhuǎn)化為解不等式(組)的問題,若f(x)為偶函數(shù),則f(-x)=f(x)=f(|x|).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
實(shí)數(shù)滿足表示點(diǎn)在直線上,可以看作點(diǎn)到原點(diǎn)的距離,最小值是原點(diǎn)到直線的距離,根據(jù)點(diǎn)到直線的距離公式求解.【詳解】因?yàn)閷?shí)數(shù)滿足=1所以表示直線上點(diǎn)到原點(diǎn)的距離,故的最小值為原點(diǎn)到直線的距離,即,故的最小值為1.【點(diǎn)睛】本題考查點(diǎn)到點(diǎn),點(diǎn)到直線的距離公式,此題的關(guān)鍵在于的最小值所表示的幾何意義的識(shí)別.12、【解析】
根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【詳解】因?yàn)椋?,即;取連續(xù)的有限項(xiàng)構(gòu)成數(shù)列,不妨令,則,且,則此時(shí)必為整數(shù);當(dāng)時(shí),,不符合;當(dāng)時(shí),,符合,此時(shí)公比;當(dāng)時(shí),,不符合;當(dāng)時(shí),,不符合;故:公比.【點(diǎn)睛】本題考查無(wú)窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時(shí),經(jīng)常需要進(jìn)行分類,可先通過(guò)列舉的方式找到思路,然后再準(zhǔn)確分析.13、2【解析】
根據(jù)條件,利用余弦定理可建立關(guān)于c的方程,即可解出c.【詳解】由余弦定理得,即,解得或(舍去).故填2.【點(diǎn)睛】本題主要考查了利用余弦定理求三角形的邊,屬于中檔題.14、【解析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)距離的平方,因此結(jié)合平面區(qū)域即可求出結(jié)果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標(biāo)函數(shù),則目標(biāo)函數(shù)表示平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)距離的平方,由圖像易知,點(diǎn)到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃問題,只需分析清楚目標(biāo)函數(shù)的幾何意義,即可結(jié)合可行域來(lái)求解,屬于??碱}型.15、分層抽樣.【解析】分析:由題可知滿足分層抽樣特點(diǎn)詳解:由于從不同齡段客戶中抽取,故采用分層抽樣故答案為分層抽樣.點(diǎn)睛:本題主要考查簡(jiǎn)單隨機(jī)抽樣,屬于基礎(chǔ)題.16、【解析】
設(shè)圓錐的底面半徑為,母線長(zhǎng)為,由圓錐的側(cè)面積、圓面積公式列出方程組求解,代入圓錐的體積公式求解.【詳解】設(shè)圓錐的底面半徑為,母線長(zhǎng)為,其側(cè)面積為,底面積為,則,解得,,∴高===,∴==.故答案為:.【點(diǎn)睛】本題考查圓錐的體積的求法,考查圓錐的側(cè)面積、底面積、體積公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)設(shè)圓心坐標(biāo)為,根據(jù),求得,進(jìn)而得到圓的方程;(2)由在圓上,則,得到,求得,進(jìn)而求得圓的切線方程.【詳解】(1)由題意,圓心在直線上,設(shè)圓心坐標(biāo)為,由,即,所以,圓心,半徑,圓的標(biāo)準(zhǔn)方程為.(2)設(shè)切線方程為,因?yàn)樵趫A上,所以,所以,又,所以,所以切線方程為,即,所以過(guò)的切線方程.【點(diǎn)睛】本題主要考查了圓的方程的求解,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟記圓的方程的形式,以及圓的切線的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18、(1);(2)【解析】
(1)從程序框圖可提煉出分段函數(shù)的函數(shù)表達(dá)式,從而計(jì)算得到的值;(2)此題為幾何概型,分類討論得到滿足條件下的函數(shù)x值,從而求得結(jié)果.【詳解】(1)由算法框圖得:當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,,(2)當(dāng)時(shí),,當(dāng)時(shí),由得故所求概率為【點(diǎn)睛】本題主要考查分段函數(shù)的應(yīng)用,算法框圖的理解,意在考查學(xué)生分析問題的能力.19、(1).(2),周長(zhǎng)為.【解析】
(1)由,利用坐標(biāo)表示化簡(jiǎn),結(jié)合余弦定理求角C(2)利用(1)中,應(yīng)用正弦定理和基本不等式,即可求出面積的最大值,此時(shí)三角形為正三角即可求周長(zhǎng).【詳解】(1)∵,∴,且,由正弦定理得:,化簡(jiǎn)得:.由余弦定理:,∴,∵,∴.(2)∵,∴(當(dāng)且僅當(dāng)時(shí)取“”),所以,,此時(shí),為正三角形,此時(shí)三角形的周長(zhǎng)為.【點(diǎn)睛】本題主要考查了利用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系,正弦定理,余弦定理,基本不等式,屬于中檔題.20、(1);(2).【解析】
(1)根據(jù)頻率分布直方圖得出該公司月收入在元到元的員工所占的頻率,再乘以可得出所求結(jié)果;(2)將每個(gè)矩形底邊的中點(diǎn)值乘以對(duì)應(yīng)矩形的面積,再將所得的積全部相加可得出該公司員工月收入的平均數(shù).【詳解】(1)根據(jù)頻率分布直方圖知,該公司月收入在元到元的員工所占的頻率為:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2019版 花城版 高中音樂 必修6音樂與戲劇 第二部分《第四單元 朗誦藝術(shù)》大單元整體教學(xué)設(shè)計(jì)2020課標(biāo)
- 普票含稅合同范例
- 中石化銷售合同范例
- 扶貧貸款合同范例
- 抖音代簽合同范例
- 渣漿泵銷售合同范例
- 基質(zhì)采購(gòu)合同范例
- 協(xié)議合同范例字號(hào)
- 2025產(chǎn)品環(huán)保認(rèn)證合同
- 供用電合同范例
- 24春國(guó)家開放大學(xué)《計(jì)算機(jī)網(wǎng)絡(luò)》形考任務(wù)1-4參考答案
- 2024北京朝陽(yáng)區(qū)高三一模英語(yǔ)試題及答案
- 園藝產(chǎn)品貯運(yùn)學(xué)智慧樹知到期末考試答案2024年
- 營(yíng)銷管理智慧樹知到期末考試答案2024年
- 【課件】丹納赫DBS-問題解決培訓(xùn)
- 現(xiàn)代食品加工技術(shù)(食品加工新技術(shù))智慧樹知到期末考試答案2024年
- 2023全國(guó)職業(yè)院校技能大賽(網(wǎng)絡(luò)建設(shè)與運(yùn)維賽項(xiàng))備考試題庫(kù)
- “牢固樹立法紀(jì)意識(shí),強(qiáng)化責(zé)任擔(dān)當(dāng)”心得體會(huì)(2篇)
- 列車車門故障應(yīng)急處理方案
- 2024年度-Pitstop教程去水印
- 2024年02月天津市口腔醫(yī)院派遣制人員招考聘用40人筆試歷年(2016-2023年)真題薈萃帶答案解析
評(píng)論
0/150
提交評(píng)論