數(shù)學(xué)實(shí)驗(yàn)課件 第6章6.2_第1頁(yè)
數(shù)學(xué)實(shí)驗(yàn)課件 第6章6.2_第2頁(yè)
數(shù)學(xué)實(shí)驗(yàn)課件 第6章6.2_第3頁(yè)
數(shù)學(xué)實(shí)驗(yàn)課件 第6章6.2_第4頁(yè)
數(shù)學(xué)實(shí)驗(yàn)課件 第6章6.2_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

6.2線性方程組求解

線性方程組包括齊次線性方程組和非齊次線性方程組.非齊次線性方程組的通解等于對(duì)應(yīng)的齊次方程的通解加上非齊次方程的一個(gè)特解.

在MATLAB中,可以用null(A)得到齊次線性方程組

的基礎(chǔ)解系;可以用inv、rank、null、左除(\)等命令求解非齊次線性方程組.例6.6

求解齊次線性方程組

.解方法1先求出系數(shù)矩陣A的行最簡(jiǎn)形矩陣,再求解.>>clear>>A=[1221;21-2-2;1-1-4-3];>>formatrat>>B=rref(A)B=10-2-5/30124/30000即得與原方程組同解的方程組由此即得寫(xiě)出向量形式,得到通解方法2先求出齊次線性方程組的基礎(chǔ)解系,再求解.>>clear>>A=[1221;21-2-2;1-1-4-3];>>null(A,'r')ans=25/3-2-4/31001即得方程組的基礎(chǔ)解系得到方程組的通解例6.7

求解方程組.解首先計(jì)算系數(shù)矩陣和增廣矩陣的秩,判斷方程組解的結(jié)構(gòu),>>clear;>>a=[1-11-1;-111-1;2-2-11];b=[1;1;-1];>>r1=rank(a)%系數(shù)矩陣的秩2>>r2=rank([a,b])

%增廣矩陣的秩2計(jì)算表明,系數(shù)矩陣和增廣矩陣的秩都為2,小于變量的個(gè)數(shù)4,說(shuō)明原方程組有無(wú)窮組解.有幾種方法求原方程組的通解.方法1用rref命令化為行最簡(jiǎn)形式求解.>>clear;>>a=[1-11-1;-111-1;2-2-11];b=[1;1;-1];>>rref([a,b])ans=

1

-1

0

0

0

0

0

1

-1

1

0

0

0

0

0由上述行最簡(jiǎn)形式得到方程組

,即可知原方程組的通解為其中

為任意常數(shù).

方法2

由于非齊次方程的通解等于齊次方程的通解加非齊次方程的一個(gè)特解,可以用null命令求對(duì)應(yīng)的齊次方程組的一個(gè)基礎(chǔ)解系.>>clear;>>a=[1-11-1;-111-1;2-2-11];b=[1;1;-1];>>x0=a\b

%非齊次方程的一個(gè)特解>>x1=null(a,’r’)

%齊次方程的通解結(jié)果為x0=

0

0

1

0x1=101001

01原方程組的通解為其中

為任意常數(shù).例6.8

求解線性方程組

.

解該方程組的系數(shù)矩陣A是方陣,可以先計(jì)算|A|,>>A=[1-1-1;2-1-3;32-5];>>D=det(A)D=3.0000

可得系數(shù)行列式|A|=3,由克拉默法則可知方程組由唯一解;也可利用逆矩陣求解.方法1克拉默法則法>>formatrat>>b=[2;1;1];>>A1=[b,A(:,[23])];%b代替A中第1列>>A2=[A(:,1),b,A(:,3)];%b代替A中第2列>>A3=[A(:,[12]),b];%b代替A中第3列>>x1=det(A1)/Dx1=17/3>>x2=det(A2)/Dx2=1/3>>x3=det(A3)/Dx3=10/3

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論