云南省陸良縣第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第1頁(yè)
云南省陸良縣第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第2頁(yè)
云南省陸良縣第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第3頁(yè)
云南省陸良縣第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第4頁(yè)
云南省陸良縣第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省陸良縣第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末考試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.下圖所示的幾何體是由一個(gè)圓柱中挖去一個(gè)以圓柱的上底面為底面,下底面圓心為質(zhì)點(diǎn)的圓錐面得到,現(xiàn)用一個(gè)垂直于底面的平面去截該幾何體、則截面圖形可能是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)2.為了得到函數(shù)y=sin(2x-πA.向右平移π6個(gè)單位 B.向右平移πC.向左平移π6個(gè)單位 D.向左平移π3.在正項(xiàng)等比數(shù)列中,,則()A. B. C. D.4.設(shè),,,則()A. B. C. D.5.已知直線與圓交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),向量、滿足,則實(shí)數(shù)a的值是()A.2 B. C.或 D.2或6.如圖,在正方體中,,分別是中點(diǎn),則異面直線與所成角大小為().A. B. C. D.7.函數(shù)的周期為()A. B. C. D.8.已知等差數(shù)列的前項(xiàng)和為,若,則()A.18 B.13 C.9 D.79.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積(弦矢+矢).弧田,由圓弧和其所對(duì)弦所圍成.公式中“弦”指圓弧所對(duì)的弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差.現(xiàn)有圓心角為,弦長(zhǎng)等于的弧田.按照《九章算術(shù)》中弧田面積的經(jīng)驗(yàn)公式計(jì)算所得弧田面積為()A. B. C. D.10.在正方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.把正整數(shù)排列成如圖甲所示的三角形數(shù)陣,然后擦去偶數(shù)行中的奇數(shù)和奇數(shù)行中的偶數(shù),得到如圖乙所示的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個(gè)數(shù)列,若,則________________.12.若,則__________.13.過(guò)點(diǎn)作直線與圓相交,則在弦長(zhǎng)為整數(shù)的所有直線中,等可能的任取一條直線,則弦長(zhǎng)長(zhǎng)度不超過(guò)14的概率為______________.14.已知圓Ω過(guò)點(diǎn)A(5,1),B(5,3),C(﹣1,1),則圓Ω的圓心到直線l:x﹣2y+1=0的距離為_____.15.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個(gè)鐵球后,水恰好把鐵球淹沒(méi),則該鐵球的體積為________16.已知向量(1,x2),(﹣2,y2﹣2),若向量,共線,則xy的最大值為_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知數(shù)列為等差數(shù)列,為前項(xiàng)和,,(1)求的通項(xiàng)公式;(2)設(shè),比較與的大小;(3)設(shè)函數(shù),,求,和數(shù)列的前項(xiàng)和.18.△ABC中,a=7,c=3,且=.(1)求b;(2)求∠A.19.某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.(1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率.(3)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:A:所有芒果以10元/千克收購(gòu);B:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),高于或等于250克的以3元/個(gè)收購(gòu),通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?20.如圖,四邊形是邊長(zhǎng)為2的正方形,為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.(1)求證:平面平面;(2)求二面角的余弦值.21.某公司為了變廢為寶,節(jié)約資源,新上了一個(gè)從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測(cè)算該項(xiàng)目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:,且每處理一噸生活垃圾,可得到能利用的生物柴油價(jià)值為元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.(1)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

根據(jù)圓錐曲線的定義和圓錐的幾何特征,分截面過(guò)旋轉(zhuǎn)軸時(shí)和截面不過(guò)旋轉(zhuǎn)軸時(shí)兩種情況,分析截面圖形的形狀,最后綜合討論結(jié)果,可得答案.【詳解】根據(jù)題意,當(dāng)截面過(guò)旋轉(zhuǎn)軸時(shí),圓錐的軸截面為等腰三角形,此時(shí)(1)符合條件;當(dāng)截面不過(guò)旋轉(zhuǎn)軸時(shí),圓錐的軸截面為雙曲線的一支,此時(shí)(4)符合條件;故截面圖形可能是(1)(4);故選:D.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是旋轉(zhuǎn)體,圓錐曲線的定義,關(guān)鍵是掌握?qǐng)A柱與圓錐的幾何特征.2、A【解析】

根據(jù)函數(shù)平移變換的方法,由2x→2x-π3即2x→2(x-π【詳解】根據(jù)函數(shù)平移變換,由y=sin2x變換為只需將y=sin2x的圖象向右平移π6【點(diǎn)睛】本題主要考查了三角函數(shù)圖象的平移變換,解題關(guān)鍵是看自變量上的變化量,屬于中檔題.3、D【解析】

結(jié)合對(duì)數(shù)的運(yùn)算,得到,即可求解.【詳解】由題意,在正項(xiàng)等比數(shù)列中,,則.故選:D.【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì),以及對(duì)數(shù)的運(yùn)算求值,其中解答中熟記等比數(shù)列的性質(zhì),合理應(yīng)用對(duì)數(shù)的運(yùn)算求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】

根據(jù)與特殊點(diǎn)的比較可得因?yàn)?,,從而得到,得出答案.【詳解】解:因?yàn)?,,所以.故選:B【點(diǎn)睛】本題主要考查指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的問(wèn)題,要熟記一些特殊點(diǎn),如,,.5、D【解析】

由,兩邊平方,得,所以,則為等腰直角三角形,而圓的半徑,則原點(diǎn)到直線的距離為,所以,解得的值為2或-2.故選D.6、C【解析】

通過(guò)中位線定理可以得到在正方體中,可以得到所以這樣找到異面直線與所成角,通過(guò)計(jì)算求解.【詳解】分別是中點(diǎn),所以有而,因此異面直線與所成角為在正方體中,,所以,故本題選C.【點(diǎn)睛】本題考查了異面直線所成的角.7、D【解析】

利用二倍角公式以及輔助角公式將函數(shù)化為,再利用三角函數(shù)的周期公式即可求解.【詳解】,函數(shù)的最小正周期為.故選:D【點(diǎn)睛】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的最小正周期的求法,屬于基礎(chǔ)題.8、B【解析】

利用等差數(shù)列通項(xiàng)公式、前項(xiàng)和列方程組,求出,.由此能求出.【詳解】解:等差數(shù)列的前項(xiàng)和為,,,,解得,..故選:.【點(diǎn)睛】本題考查等差數(shù)列第7項(xiàng)的值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.9、C【解析】

首先根據(jù)圖形計(jì)算出矢,弦,再帶入弧田面積公式即可.【詳解】如圖所示:因?yàn)椋?,為等邊三角?所以,矢,弦..故選:C【點(diǎn)睛】本題主要考查扇形面積公式,同時(shí)考查學(xué)生對(duì)題意的理解,屬于中檔題.10、C【解析】

利用正方體中,,將問(wèn)題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計(jì)算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長(zhǎng)為,則由為棱的中點(diǎn),可得,所以,則.故選C.【點(diǎn)睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個(gè)平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因?yàn)橹本€夾角為銳角,所以②對(duì)應(yīng)的余弦取絕對(duì)值即為直線所成角的余弦值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由圖乙可得:第行有個(gè)數(shù),且第行最后的一個(gè)數(shù)為,從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,注意到,,據(jù)此確定n的值即可.【詳解】分析圖乙,可得①第行有個(gè)數(shù),則前行共有個(gè)數(shù),②第行最后的一個(gè)數(shù)為,③從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,又由,,則,則出現(xiàn)在第行,第行第一個(gè)數(shù)為,這行中第個(gè)數(shù)為,前行共有個(gè)數(shù),則為第個(gè)數(shù).故填.【點(diǎn)睛】歸納推理是由部分到整體、由特殊到一般的推理,由歸納推理所得的結(jié)論不一定正確,通常歸納的個(gè)體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會(huì)越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法.12、;【解析】

把分子的1換成,然后弦化切,代入計(jì)算.【詳解】.故答案為-1.【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn)求值.解題關(guān)鍵是“1”的代換,即,然后弦化切.13、【解析】

根據(jù)圓的性質(zhì)可求得最長(zhǎng)弦和最短弦的長(zhǎng)度,從而得到所有弦長(zhǎng)為整數(shù)的直線條數(shù),從中找到長(zhǎng)度不超過(guò)的直線條數(shù),根據(jù)古典概型求得結(jié)果.【詳解】由題意可知,最長(zhǎng)弦為圓的直徑:在圓內(nèi)部且圓心到的距離為最短弦長(zhǎng)為:弦長(zhǎng)為整數(shù)的直線的條數(shù)有:條其中長(zhǎng)度不超過(guò)的條數(shù)有:條所求概率:本題正確結(jié)果:【點(diǎn)睛】本題考查古典概型概率問(wèn)題的求解,涉及到過(guò)圓內(nèi)一點(diǎn)的最長(zhǎng)弦和最短弦的長(zhǎng)度的求解;易錯(cuò)點(diǎn)是忽略圓的對(duì)稱性,造成在求解弦長(zhǎng)為整數(shù)的直線的條數(shù)時(shí)出現(xiàn)丟根的情況.14、【解析】

求得線段和線段的垂直平分線,求這兩條垂直平分線的交點(diǎn)即求得圓的圓心,在求的圓心到直線的距離.【詳解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中點(diǎn)坐標(biāo)為(5,2),則AB的垂直平分線方程為y=2;BC的中點(diǎn)坐標(biāo)為(2,2),,則BC的垂直平分線方程為y﹣2=﹣3(x﹣2),即3x+y﹣8=1.聯(lián)立,得.∴圓Ω的圓心為Ω(2,2),則圓Ω的圓心到直線l:x﹣2y+1=1的距離為d.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)圓上點(diǎn)的坐標(biāo)求圓心坐標(biāo),考查點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.15、【解析】

通過(guò)將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點(diǎn)M,故,則,所以,,所以放球后,而,而,解得.【點(diǎn)睛】本題主要考查圓錐體積與球體積的相關(guān)計(jì)算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計(jì)算能力和分析能力.16、【解析】

由題意利用兩個(gè)向量共線的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,可得,再利用基本不等式,求得的最大值.【詳解】向量,,若向量,共線,則,,即,當(dāng)且僅當(dāng),時(shí),取等號(hào).故的最大值為,故答案為:.【點(diǎn)睛】本題主要考查兩個(gè)向量共線的性質(zhì),考查兩個(gè)向量坐標(biāo)形式的運(yùn)算和基本不等式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2);(3),,【解析】

(1)利用基本元的思想,將已知轉(zhuǎn)化為的形式列方程組,解方程組求得的值,從而求得數(shù)列的通項(xiàng)公式.(2)利用裂項(xiàng)求和法求得表達(dá)式,判斷出,利用對(duì)數(shù)函數(shù)的性質(zhì)得到,由此得到.(3)首先求得,當(dāng)時(shí),根據(jù)的表達(dá)式,求得的表達(dá)式.利用分組求和法求得當(dāng)時(shí)的表達(dá)式,并根據(jù)的值求得的分段表達(dá)式.【詳解】(1)為等差數(shù)列,,得,∴(2)∵,∴,又,∴.(3)由分段函數(shù),可以得到:,,當(dāng)時(shí),,故當(dāng)時(shí),,又符合上式所以.【點(diǎn)睛】本小題主要考查等差數(shù)列基本量的計(jì)算,考查裂項(xiàng)求和法、分組求和法,考查運(yùn)算求解能力,屬于中檔題.18、(1);(2)∠A=120°.【解析】

由正弦定理求得b,由余弦定理求得cos∠A,進(jìn)而求出∠A的值.【詳解】(1)由正弦定理得=可得,==,所以b==1.(2)由余弦定理得cosA===,又因?yàn)?,所以∠A=120°.【點(diǎn)睛】本題考查正弦定理、余弦定理的應(yīng)用,屬基礎(chǔ)題,根據(jù)正弦定理求出b的值,是解題的關(guān)鍵.19、(1)中位數(shù)為268.75;(2);(3)選B方案【解析】

(1)根據(jù)中位數(shù)左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計(jì)算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所以中位數(shù)在內(nèi),設(shè)中位數(shù)為,則有,解得.故中位數(shù)為268.75.(2)設(shè)質(zhì)量在內(nèi)的4個(gè)芒果分別為,,,,質(zhì)量在內(nèi)的2個(gè)芒果分別為,.從這6個(gè)芒果中選出3個(gè)的情況共有,,,,,,,,,,,,,,,,,,,,共計(jì)20種,其中恰有一個(gè)在內(nèi)的情況有,,,,,,,,,,,,共計(jì)12種,因此概率.(3)方案A:元.方案B:由題意得低于250克:元;高于或等于250克元.故總計(jì)元,由于,故B方案獲利更多,應(yīng)選B方案.【點(diǎn)睛】本題主要考查了頻率分布直方圖的用法以及古典概型的方法,同時(shí)也考查了根據(jù)樣本估計(jì)總體的方法等.屬于中等題型.20、(1)見解析;(2)【解析】

(1)先由線面垂直的判定定理得到平面,進(jìn)而可得平面平面;(2)先取中點(diǎn),連結(jié),,證明平面平面,在平面內(nèi)作于點(diǎn),則平面.以點(diǎn)為原點(diǎn),為軸,為軸,如圖建立空間直角坐標(biāo)系.分別求出兩平面的法向量,求向量夾角余弦值,即可求出結(jié)果.【詳解】(1)因?yàn)樗倪呅问钦叫?,所以折起后,且,因?yàn)椋允钦切?,所?又因?yàn)檎?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論