2024屆寧德市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2024屆寧德市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2024屆寧德市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2024屆寧德市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2024屆寧德市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆寧德市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的部分圖象如圖所示,為了得到的圖象,只需將的圖象A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位2.某個命題與自然數(shù)有關(guān),且已證得“假設(shè)時該命題成立,則時該命題也成立”.現(xiàn)已知當(dāng)時,該命題不成立,那么()A.當(dāng)時,該命題不成立 B.當(dāng)時,該命題成立C.當(dāng)時,該命題不成立 D.當(dāng)時,該命題成立3.將兩個長、寬、高分別為5,4,3的長方體壘在一起,使其中兩個面完全重合,組成一個大長方體,則大長方體的外接球表面積的最大值為()A. B. C. D.4.等差數(shù)列的前項和為,若,且,則()A.10 B.7 C.12 D.35.莖葉圖記錄了甲、乙兩組各6名學(xué)生在一次數(shù)學(xué)測試中的成績(單位:分).已知甲組數(shù)據(jù)的眾數(shù)為124,乙組數(shù)據(jù)的平均數(shù)即為甲組數(shù)據(jù)的中位數(shù),則,的值分別為A. B.C. D.6.在中,邊,,分別是角,,的對邊,且滿足,若,則的值為A. B. C. D.7.已知向量,且,則().A. B.C. D.8.如圖是函數(shù)一個周期的圖象,則的值等于A. B. C. D.9.已知點在第二象限,角頂點為坐標原點,始邊為軸的非負半軸,則角的終邊落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.一枚骰子連續(xù)投兩次,則兩次向上點數(shù)均為1的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若正四棱錐的所有棱長都相等,則該棱錐的側(cè)棱與底面所成的角的大小為____.12.已知算式,在方框中填入兩個正整數(shù),使它們的乘積最大,則這兩個正整數(shù)之和是___.13.在平面直角坐標系中,在軸、軸正方向上的投影分別是、,則與同向的單位向量是__________.14.不等式的解集為_____________________。15.把數(shù)列的各項排成如圖所示三角形狀,記表示第m行、第n個數(shù)的位置,則在圖中的位置可記為____________.16.在各項均為正數(shù)的等比數(shù)列中,,,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角,,所對的邊分別為,,.若.(1)求角的度數(shù);(2)當(dāng)時,求的取值范圍.18.設(shè)函數(shù)f(x)=x(1)當(dāng)a=2時,函數(shù)f(x)的圖像經(jīng)過點(1,a+1),試求m的值,并寫出(不必證明)f(x)的單調(diào)遞減區(qū)間;(2)設(shè)a=-1,h(x)+x?f(x)=0,g(x)=2cos(x-π3),若對于任意的s∈[1,2],總存在t∈[0,π]19.已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,它的終邊過點P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β滿足sin(α+β)=,求cosβ的值.20.已知函數(shù).(1)若,求函數(shù)的值;(2)求函數(shù)的值域.21.如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形,由對稱性,圖中8個三角形都是全等的三角形,設(shè).(1)試用表示的面積;(2)求八角形所覆蓋面積的最大值,并指出此時的大小.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:由圖象知,,,,,得,所以,為了得到的圖象,所以只需將的圖象向右平移個長度單位即可,故選D.考點:三角函數(shù)圖象.2、C【解析】

寫出命題“假設(shè)時該命題成立,則時該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設(shè)時該命題成立,則時該命題也成立”的逆否命題為“假設(shè)當(dāng)時該命題不成立,則當(dāng)時該命題也不成立”,由于當(dāng)時,該命題不成立,則當(dāng)時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應(yīng)用,解題時要寫出原命題的逆否命題,結(jié)合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.3、B【解析】

要計算長方體的外接球表面積就是要求出外接球的半徑,根據(jù)長方體的對角線是外接球的直徑這一性質(zhì),就可以求出外接球的表面積,分類討論:(1)長寬的兩個面重合;(2)長高的兩個面重合;(3)高寬兩個面重合,分別計算出新長方體的對角線,然后分別計算出外接球的表面積,最后通過比較即可求出最大值.【詳解】(1)當(dāng)長寬的兩個面重合,新的長方體的長為5,寬為4,高為6,對角線長為:,所以大長方體的外接球表面積為;(2)當(dāng)長高兩個面重合,新的長方體的長5,寬為8,高為3,對角線長為:,所以大長方體的外接球表面積為;(3)當(dāng)寬高兩個面重合,新的長方體的長為10,寬為4,高為3,對角線長為:,所以大長方體的外接球表面積為,顯然大長方體的外接球表面積的最大值為,故本題選B.【點睛】本題考查了長方體外接球的半徑的求法,考查了分類討論思想,考查了球的表面積計算公式,考查了數(shù)學(xué)運算能力.4、C【解析】

由等差數(shù)列的前項和公式解得,由,得,由此能求出的值?!驹斀狻拷猓翰顢?shù)列的前n項和為,,,解得,解得,故選:C?!军c睛】本題考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.5、A【解析】

根據(jù)眾數(shù)的概念可確定;根據(jù)平均數(shù)的計算方法可構(gòu)造方程求得.【詳解】甲組數(shù)據(jù)眾數(shù)為甲組數(shù)據(jù)的中位數(shù)為乙組數(shù)據(jù)的平均數(shù)為:,解得:本題正確選項:【點睛】本題考查莖葉圖中眾數(shù)、中位數(shù)、平均數(shù)的求解,屬于基礎(chǔ)題.6、A【解析】

利用正弦定理把題設(shè)等式中的邊換成角的正弦,進而利用兩角和公式化簡整理可得的值,由可得的值【詳解】在中,由正弦定理可得化為:即在中,,故,可得,即故選【點睛】本題以三角形為載體,主要考查了正弦定理,向量的數(shù)量積的運用,考查了兩角和公式,考查了分析問題和解決問題的能力,屬于中檔題。7、D【解析】

運用平面向量的加法的幾何意義,結(jié)合等式,把其中的向量都轉(zhuǎn)化為以為起點的向量的形式,即可求出的表示.【詳解】,,故本題選D.【點睛】本題考查了平面向量加法的幾何意義,屬于基礎(chǔ)題.8、A【解析】

利用圖象得到振幅,周期,所以,再由圖象關(guān)于成中心對稱,把原式等價于求的值.【詳解】由圖象得:振幅,周期,所以,所以,因為圖象關(guān)于成中心對稱,所以,,所以原式,故選A.【點睛】本題考查三角函數(shù)的周期性、對稱性等性質(zhì),如果算出每個值再相加,會浪費較多時間,且容易出錯,采用對稱性求解,能使問題的求解過程變得更簡潔.9、C【解析】

根據(jù)點的位置,得到不等式組,進行判斷角的終邊落在的位置.【詳解】點在第二象限在第三象限,故本題選C.【點睛】本題考查了通過角的正弦值和正切值的正負性,判斷角的終邊位置,利用三角函數(shù)的定義是解題的關(guān)鍵.10、D【解析】

連續(xù)投兩次骰子共有36種,求出滿足情況的個數(shù),即可求解.【詳解】一枚骰子投一次,向上的點數(shù)有6種,則連續(xù)投兩次骰子共有36種,兩次向上點數(shù)均為1的有1種情況,概率為.故選:D.【點睛】本題考查古典概型的概率,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先作出線面角,再利用三角函數(shù)求解即可.【詳解】如圖,設(shè)正四棱錐的棱長為1,作在底面的射影,則為與底面所成角,為正方形的中心,,,,故答案為.【點睛】本題考查線面角,考查學(xué)生的計算能力,作出線面角是關(guān)鍵.屬于基礎(chǔ)題.12、.【解析】

設(shè)填入的數(shù)從左到右依次為,則,利用基本不等式可求得的最大值及此時的和.【詳解】設(shè)在方框中填入的兩個正整數(shù)從左到右依次為,則,于是,,當(dāng)且僅當(dāng)時取等號,此時.故答案為:15【點睛】本題考查基本不等式成立的條件,屬于基礎(chǔ)題.13、【解析】

根據(jù)題意得出,再利用單位向量的定義即可求解.【詳解】由在軸、軸正方向上的投影分別是、,可得,所以與同向的單位向量為,故答案為:【點睛】本題考查了向量的坐標表示以及單位向量的定義,屬于基礎(chǔ)題.14、或【解析】

利用一元二次函數(shù)的圖象或轉(zhuǎn)化為一元一次不等式組解一元二次不等式.【詳解】由,或,所以或,不等式的解集為或.【點睛】本題考查解一元二次不等式,考查計算能力,屬于基本題.15、【解析】

利用第m行共有個數(shù),前m行共有個數(shù),得的位置即可求解【詳解】因為第m行共有個數(shù),前m行共有個數(shù),所以應(yīng)該在第11行倒數(shù)第二個數(shù),所以的位置為.故答案為:【點睛】本題考查等差數(shù)列的通項和求和公式,發(fā)現(xiàn)每行個數(shù)成等差是關(guān)鍵,是基礎(chǔ)題16、8【解析】

根據(jù)題中數(shù)列,結(jié)合等比數(shù)列的性質(zhì),得到,即可得出結(jié)果.【詳解】因為數(shù)列為各項均為正數(shù)的等比數(shù)列,,,所以.故答案為【點睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,熟記等比數(shù)列的性質(zhì)即可,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)根據(jù)余弦定理即可解決.(2)根據(jù)向量的三角形法則即可解決.【詳解】(1)因為,所以得,所以,所以,因為所以;(2)取的中點,則,,所以所以,從而由平行四邊形性質(zhì)有故.【點睛】本題主要考查了余弦定理以及向量的三角形法則,其中第二問用了完全平方以及加減消元的思想,是本題的一個難點.解決本題的關(guān)鍵是畫一個三角形結(jié)合三角形進行分析.18、(1)遞減區(qū)間為[-2,0)和(0,2【解析】

(1)將點(1,3)代入函數(shù)f(x)即可求出m,根據(jù)函數(shù)的解析式寫出單調(diào)遞減區(qū)間即可(2)當(dāng)a=-1時,寫出函數(shù)h(x),由題意知h(s)的值域是g(t)值域的子集,即可求出.【詳解】(1)因為函數(shù)f(x)的圖像經(jīng)過點(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴????∴f(x)的單調(diào)遞減區(qū)間為[-2,0)(2)當(dāng)a=-1時,f(x)=x-1∴???∵g(x)=2cos∴??t∈[0,π]時,g(t)∈[-1,2]由對于任意的s∈[1,2],總存在t∈[0,π],使得h(s)=g(t)知:h(s)的值域是g(t)值域的子集.因為h(x)=-x2-mx+1①當(dāng)-m2≤1只需滿足h(1)=-m≤2h(2)=-3-2m≥-1解得-2≤m≤-1.②當(dāng)1<-m2<2因為h(1)=-m>2,與h(s)?[-1,2]矛盾,故舍去.③當(dāng)-m2≥2h(1)=-m≥4與h(s)?[-1,2]矛盾,故舍去.綜上,m∈[-2,-1].【點睛】本題主要考查了函數(shù)的單調(diào)性,以及含參數(shù)二次函數(shù)值域的求法,涉及存在性問題,轉(zhuǎn)化思想和分類討論思想要求較高,屬于難題.19、(Ⅰ);(Ⅱ)或.【解析】

分析:(Ⅰ)先根據(jù)三角函數(shù)定義得,再根據(jù)誘導(dǎo)公式得結(jié)果,(Ⅱ)先根據(jù)三角函數(shù)定義得,再根據(jù)同角三角函數(shù)關(guān)系得,最后根據(jù),利用兩角差的余弦公式求結(jié)果.【詳解】詳解:(Ⅰ)由角的終邊過點得,所以.(Ⅱ)由角的終邊過點得,由得.由得,所以或.點睛:三角函數(shù)求值的兩種類型(1)給角求值:關(guān)鍵是正確選用公式,以便把非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù).(2)給值求值:關(guān)鍵是找出已知式與待求式之間的聯(lián)系及函數(shù)的差異.①一般可以適當(dāng)變換已知式,求得另外函數(shù)式的值,以備應(yīng)用;②變換待求式,便于將已知式求得的函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論