版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆河北省承德市鷹城一中高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,,,則()A. B. C.-7 D.72.甲、乙兩人下棋,甲獲勝的概率為40%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率為()A.50% B.30% C.10% D.60%3.設(shè)全集,集合,,則()A. B.C. D.4.已知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,若,則()A. B. C. D.5.關(guān)于x的不等式的解集中,恰有3個(gè)整數(shù),則a的取值范圍是()A. B. C. D.(4,5)6.設(shè)等差數(shù)列,則等于()A.120 B.60 C.54 D.1087.已知△ABC的項(xiàng)點(diǎn)坐標(biāo)為A(1,4),B(﹣2,0),C(3,0),則角B的內(nèi)角平分線所在直線方程為()A.x﹣y+2=0 B.xy+2=0 C.xy+2=0 D.x﹣2y+2=08.已知兩個(gè)等差數(shù)列,的前項(xiàng)和分別為,,若對(duì)任意的正整數(shù),都有,則等于()A.1 B. C. D.9.設(shè),,,若則,的值是()A., B.,C., D.,10.若直線xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)偶函數(shù)的部分圖像如圖所示,為等腰直角三角形,,則的值為________.12.平面⊥平面,,,,直線,則直線與的位置關(guān)系是___.13.在平面直角坐標(biāo)系xOy中,若直線與直線平行,則實(shí)數(shù)a的值為______.14.已知平行四邊形的周長為,,則平行四邊形的面積是_______15.函數(shù)的最小正周期為.16.在平面直角坐標(biāo)系中,在軸、軸正方向上的投影分別是、,則與同向的單位向量是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.經(jīng)觀測,某公路段在某時(shí)段內(nèi)的車流量(千輛/小時(shí))與汽車的平均速度(千米/小時(shí))之間有函數(shù)關(guān)系:.(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度為多少時(shí)車流量最大?最大車流量為多少?(精確到0.01)(2)為保證在該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?18.已知直線:及圓心為的圓:.(1)當(dāng)時(shí),求直線與圓相交所得弦長;(2)若直線與圓相切,求實(shí)數(shù)的值.19.為了解某城市居民的月平均用電量情況,隨機(jī)抽查了該城市100戶居民的月平均用電量(單位:度),得到頻率分布直方圖(如圖所示).數(shù)據(jù)的分組依次為、、、、、、.(1)求頻率分布直方圖中的值;(2)求該城市所有居民月平均用電量的眾數(shù)和中位數(shù)的估計(jì)值;(3)在月平均用電量為的四組用戶中,采用分層抽樣的方法抽取戶居民,則應(yīng)從月用電量在居民中抽取多少戶?20.隨著高校自主招生活動(dòng)的持續(xù)開展,我市高中生掀起了參與數(shù)學(xué)興趣小組的熱潮.為調(diào)查我市高中生對(duì)數(shù)學(xué)學(xué)習(xí)的喜好程度,從甲、乙兩所高中各自隨機(jī)抽取了40名學(xué)生,記錄他們在一周內(nèi)平均每天學(xué)習(xí)數(shù)學(xué)的時(shí)間,并將其分成了6個(gè)區(qū)間:、、、、、,整理得到如下頻率分布直方圖:(1)試估計(jì)甲高中學(xué)生一周內(nèi)平均每天學(xué)習(xí)數(shù)學(xué)的時(shí)間的中位數(shù)甲(精確到0.01);(2)判斷從甲、乙兩所高中各自隨機(jī)抽取的40名學(xué)生一周內(nèi)平均每天學(xué)習(xí)數(shù)學(xué)的時(shí)間的平均值甲與乙及方差甲與乙的大小關(guān)系(只需寫出結(jié)論),并計(jì)算其中的甲、甲(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).21.已知,為第二象限角.(1)求的值;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
把已知等式平方后可求得.【詳解】∵,∴,即,,∵,∴,∴,,∴.故選C.【點(diǎn)睛】本題考查同角間的三角函數(shù)關(guān)系,考查兩角和的正切公式,解題關(guān)鍵是把已知等式平方,并把1用代替,以求得.2、A【解析】
甲不輸?shù)母怕实扔诩撰@勝或者平局的概率相加,計(jì)算得到答案.【詳解】甲不輸?shù)母怕实扔诩撰@勝或者平局的概率相加甲、乙下成平局的概率為:故答案選A【點(diǎn)睛】本題考查了互斥事件的概率,意在考查學(xué)生對(duì)于概率的理解.3、A【解析】
進(jìn)行交集、補(bǔ)集的運(yùn)算即可.【詳解】?UB={x|﹣2<x<1};∴A∩(?UB)={x|﹣1<x<1}.故選:A.【點(diǎn)睛】考查描述法的定義,以及交集、補(bǔ)集的運(yùn)算.4、C【解析】
本題首先可根據(jù)首項(xiàng)為以及公差為求出數(shù)列的通項(xiàng)公式,然后根據(jù)以及數(shù)列的通項(xiàng)公式即可求出答案.【詳解】因?yàn)閿?shù)列為首項(xiàng),公差的等差數(shù)列,所以,因?yàn)樗?,,故選C.【點(diǎn)睛】本題考查如何判斷實(shí)數(shù)為數(shù)列中的哪一項(xiàng),主要考查等差數(shù)列的通項(xiàng)公式的求法,等差數(shù)列的通項(xiàng)公式為,考查計(jì)算能力,是簡單題.5、A【解析】
不等式等價(jià)轉(zhuǎn)化為,當(dāng)時(shí),得,當(dāng)時(shí),得,由此根據(jù)解集中恰有3個(gè)整數(shù)解,能求出的取值范圍?!驹斀狻筷P(guān)于的不等式,不等式可變形為,當(dāng)時(shí),得,此時(shí)解集中的整數(shù)為2,3,4,則;當(dāng)時(shí),得,,此時(shí)解集中的整數(shù)為-2,-1,0,則故a的取值范圍是,選:A?!军c(diǎn)睛】本題難點(diǎn)在于分類討論解含參的二次不等式,由于二次不等式對(duì)應(yīng)的二次方程的根大小不確定,所以要對(duì)和1的大小進(jìn)行分類討論。其次在觀察的范圍的時(shí)候要注意范圍的端點(diǎn)能否取到,防止選擇錯(cuò)誤的B選項(xiàng)。6、C【解析】
題干中只有一個(gè)等式,要求前9項(xiàng)的和,可利用等差數(shù)列的性質(zhì)解決?!驹斀狻?,選C.【點(diǎn)睛】題干中只有一個(gè)等式,要求前9項(xiàng)的和,可利用等差數(shù)列的性質(zhì)解決。也可將等式全部化為的表達(dá)式,整體代換計(jì)算出7、D【解析】
由已知可得|AB|=|BC|=5,所以角B的內(nèi)角平分線所在直線方程為AC的垂直平分線,繼而可以求得結(jié)果.【詳解】由已知可得|AB|=|BC|=5,所以角B的內(nèi)角平分線所在直線方程為AC的垂直平分線,又線段AC中點(diǎn)坐標(biāo)為(2,2),則角B的內(nèi)角平分線所在直線方程為y﹣2,即x﹣2y+2=1.故選:D.【點(diǎn)評(píng)】本題考查直線的位置關(guān)系,考查垂直的應(yīng)用,由|AB|=|BC|=5轉(zhuǎn)化為求直線的AC的垂直平分線是關(guān)鍵,屬于中檔題.8、B【解析】
利用等差數(shù)列的性質(zhì)將化為同底的,再化簡,將分子分母配湊成前n項(xiàng)和的形式,再利用題干條件,計(jì)算?!驹斀狻俊叩炔顢?shù)列,的前項(xiàng)和分別為,,對(duì)任意的正整數(shù),都有,∴.故選B.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)的應(yīng)用,屬于中檔題。9、B【解析】
由向量相等的充要條件可得:,列出方程組,即可求解,得到答案.【詳解】由題意,向量,,,又因?yàn)?,所以,所以,解得,故選B.【點(diǎn)睛】本題主要考查了平面向量的數(shù)乘運(yùn)算及向量相等的充要條件,其中解答中熟記向量的共線條件,列出方程組求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、C【解析】
將1,2代入直線方程得到1a+2【詳解】將1,2代入直線方程得到1a+b=(a+b)(當(dāng)a=2故答案選C【點(diǎn)睛】本題考查了直線方程,均值不等式,1的代換是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】的部分圖象如圖所示,為等腰直角三角形,,,函數(shù)是偶函數(shù),,函數(shù)的解析式為,故答案為.【方法點(diǎn)睛】本題主要通過已知三角函數(shù)的圖象求解析式考查三角函數(shù)的性質(zhì),屬于中檔題.利用最值求出,利用圖象先求出周期,用周期公式求出,利用特殊點(diǎn)求出,正確求使解題的關(guān)鍵.求解析時(shí)求參數(shù)是確定函數(shù)解析式的關(guān)鍵,往往利用特殊點(diǎn)求的值,由特殊點(diǎn)求時(shí),一定要分清特殊點(diǎn)是“五點(diǎn)法”的第幾個(gè)點(diǎn).12、【解析】
利用面面垂直的性質(zhì)定理得到平面,又直線,利用線面垂直性質(zhì)定理得.【詳解】在長方體中,設(shè)平面為平面,平面為平面,直線為直線,由于,,由面面垂直的性質(zhì)定理可得:平面,因?yàn)?,由線面垂直的性質(zhì)定理,可得.【點(diǎn)睛】空間中點(diǎn)、線、面的位置關(guān)系問題,一般是利用線面平行或垂直的判定定理或性質(zhì)定理進(jìn)行求解.13、1【解析】
由,解得,經(jīng)過驗(yàn)證即可得出.【詳解】由,解得.經(jīng)過驗(yàn)證可得:滿足直線與直線平行,則實(shí)數(shù).故答案為:1.【點(diǎn)睛】本題考查直線的平行與斜率之間的關(guān)系,考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
設(shè),根據(jù)條件可以求出,兩邊平方可以得到關(guān)系式,由余弦定理可以表示出,把代入得到的關(guān)系式,聯(lián)立求出的值,過作垂直于,設(shè),則可以表示,利用勾股定理,求出的值,確定長,即求出平行四邊形的面積【詳解】設(shè)又,由余弦定理將代入,得到將(2)代入(1)得到可以解得:(另一種情況不影響結(jié)果),過作垂直于,設(shè),則,所以填寫【點(diǎn)睛】幾何題如果關(guān)系量理清不了,可以嘗試作圖,引入相鄰邊的參數(shù),通過方程把參數(shù)求出,平行四邊形問題可以通過轉(zhuǎn)化變?yōu)槿切螁栴},進(jìn)而把問題簡單化.15、【解析】試題分析:,所以函數(shù)的周期等于考點(diǎn):1.二倍角降冪公式;2.三角函數(shù)的周期.16、【解析】
根據(jù)題意得出,再利用單位向量的定義即可求解.【詳解】由在軸、軸正方向上的投影分別是、,可得,所以與同向的單位向量為,故答案為:【點(diǎn)睛】本題考查了向量的坐標(biāo)表示以及單位向量的定義,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)v=40千米/小時(shí),車流量最大,最大值為11.08千輛/小時(shí)(2)汽車的平均速度應(yīng)控制在25≤v≤64這個(gè)范圍內(nèi)【解析】
(1)將已知函數(shù)化簡,利用基本不等式求車流量y最大值;
(2)要使該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),即使,解之即可得汽車的平均速度的控制范圍.【詳解】解:(1)=≤=≈11.08,當(dāng)v=,即v=40千米/小時(shí),車流量最大,最大值為11.08千輛/小時(shí).(2)據(jù)題意有:,化簡得,即,所以,所以汽車的平均速度應(yīng)控制在這個(gè)范圍內(nèi).【點(diǎn)睛】本題以已知函數(shù)關(guān)系式為載體,考查基本不等式的使用,考查解不等式,屬于基礎(chǔ)題.18、(1)弦長為4;(1)0【解析】
(1)由得到直線過圓的圓心,可求得弦長即為圓的直徑4;(1)由點(diǎn)到直線的距離等于半徑1,得到關(guān)于的方程,并求出.【詳解】(1)當(dāng)時(shí),直線:,圓:.圓心坐標(biāo)為,半徑為1.圓心在直線上,則直線與圓相交所得弦長為4.(1)由直線與圓相切,則圓心到直線的距離等于半徑,所以,解得:.【點(diǎn)睛】本題考查直線與圓相交、相切兩種位置關(guān)系,求解時(shí)注意點(diǎn)到直線距離公式的應(yīng)用,考查基本運(yùn)算求解能力.19、(1);(2)眾數(shù)為度,中位數(shù)為度;(3)戶.【解析】
(1)利用頻率分布直方圖中所有矩形面積之和為可求得的值;(2)利用頻率分布直方圖中最高矩形底邊的中點(diǎn)值為眾數(shù),可得出該城市所有居民月平均用電量的眾數(shù),利用中位數(shù)左邊的矩形面積之和為可求得該城市所有居民月平均用電量的中位數(shù);(3)計(jì)算出月用電量在的用戶在月平均用電量為的用戶中所占的比例,乘以可得出結(jié)果.【詳解】(1)因?yàn)?,所以;?)月平均用電量眾數(shù)的估計(jì)值為度,,故中位數(shù),所以,,解得,故月平均用電量中位數(shù)的估計(jì)值為度;(3)月均用電量在、、、的用戶分別為戶、戶、戶、戶,其中,月均用電量為的用戶在月平均用電量為的用戶中所占的比例為,所以在月均用電量為的用戶中應(yīng)抽?。☉簦?【點(diǎn)睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)、眾數(shù),同時(shí)也考查了利用分層抽樣求樣本容量,考查計(jì)算能力,屬于基礎(chǔ)題.20、(1);(2)甲乙,甲乙,甲=,甲=【解析】
(1)根據(jù)每組小矩形的面積確定中位數(shù)所在區(qū)間,即可求解;(2)根據(jù)直方圖特征即可判定甲乙,甲乙,根據(jù)平均數(shù)和方差的公式分別計(jì)算求值.【詳解】(1)由甲高中頻率分布直方圖可得:第一組頻率0.1,第二組頻率0.2,第三組頻率0.3,所以中位數(shù)在第
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 成功學(xué)課程設(shè)計(jì)
- 慈溪城北水廠研究報(bào)告
- 感覺統(tǒng)合的課程設(shè)計(jì)
- 感性工學(xué)課程設(shè)計(jì)
- 怎么導(dǎo)入板書技能課程設(shè)計(jì)
- 懷化乳化管道安裝施工方案
- 康復(fù)治療科醫(yī)師崗位說明書
- 心理活動(dòng)小游戲課程設(shè)計(jì)
- 工業(yè)用洗盤機(jī)項(xiàng)目可行性實(shí)施報(bào)告
- 德州室外假山施工方案
- 《PLM系統(tǒng)簡介》課件
- 《西湖龍井茶》課件
- 劍南春人才測評(píng)題
- 總經(jīng)理辦會(huì)議流程課件
- 三體系貫標(biāo)培訓(xùn)資料范文
- 小學(xué)勞動(dòng)教育三年級(jí)上冊第一單元-3《刷洗書包》教學(xué)設(shè)計(jì)
- 醫(yī)院醫(yī)院安全生產(chǎn)管理培訓(xùn)
- 體育教師極攻略
- 萬千教育學(xué)前幼兒園課程故事:支架教師的專業(yè)成長
- 東野圭吾:我的老師是偵探
- 雜耍人社交力學(xué)-雜耍人方法精義
評(píng)論
0/150
提交評(píng)論