四川省成都市雙流棠湖中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
四川省成都市雙流棠湖中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
四川省成都市雙流棠湖中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
四川省成都市雙流棠湖中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
四川省成都市雙流棠湖中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省成都市雙流棠湖中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.《九章算術(shù)》卷第六《均輸》中,提到如下問(wèn)題:“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升.問(wèn)中間二節(jié)欲均容,各多少?”其大致意思是說(shuō),若九節(jié)竹每節(jié)的容量依次成等差數(shù)列,下三節(jié)容量四升,上四節(jié)容量三升,則中間兩節(jié)的容量各是()A.升、升 B.升、升C.升、升 D.升、升2.設(shè)函數(shù)的最大值為,最小值為,則與滿足的關(guān)系是()A. B.C. D.3.點(diǎn),,直線與線段相交,則實(shí)數(shù)的取值范圍是()A. B.或C. D.或4.?dāng)?shù)列的通項(xiàng)公式,則()A. B. C.或 D.不存在5.己知數(shù)列和的通項(xiàng)公式分別內(nèi),,若,則數(shù)列中最小項(xiàng)的值為()A. B.24 C.6 D.76.已知公式為正數(shù)的等比數(shù)列滿足:,,則前5項(xiàng)和()A.31 B.21 C.15 D.117.三角形的三條邊長(zhǎng)是連續(xù)的三個(gè)自然數(shù),且最大角是最小角的2倍,則該三角形的最大邊長(zhǎng)為()A.4 B.5 C.6 D.78.在正方體中,異面直線與所成的角為()A.30° B.45° C.60° D.90°9.在中,已知、、分別是角、、的對(duì)邊,若,則的形狀為A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形10.如圖是某體育比賽現(xiàn)場(chǎng)上評(píng)委為某位選手打出的分?jǐn)?shù)的莖葉圖,去掉一個(gè)最高分和一個(gè)最低分,所剩數(shù)據(jù)的平均數(shù)和方差分別是()A.5和1.6 B.85和1.6 C.85和0.4 D.5和0.4二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),的值域是________.12.已知二面角為60°,動(dòng)點(diǎn)P、Q分別在面、內(nèi),P到的距離為,Q到的距離為,則P、Q兩點(diǎn)之間距離的最小值為.13.已知向量、滿足,,且,則與的夾角為_(kāi)_______.14.?dāng)?shù)列中,其前n項(xiàng)和,則的通項(xiàng)公式為_(kāi)_____________..15.已知向量,,若向量與垂直,則__________.16.求值:_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知向量,的夾角為,且,.(1)求;(2)求.18.據(jù)說(shuō)偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個(gè)如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點(diǎn)為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.(1)試計(jì)算出圖案中球與圓柱的體積比;(2)假設(shè)球半徑.試計(jì)算出圖案中圓錐的體積和表面積.19.在△ABC中,已知BC=7,AB=3,∠A=60°.(1)求cos∠C的值;(2)求△ABC的面積.20.在中,角A,B,C,的對(duì)應(yīng)邊分別為,且.(Ⅰ)求角B的大?。唬á颍┤舻拿娣e為,,D為AC的中點(diǎn),求BD的長(zhǎng).21.已知三角形ABC的頂點(diǎn)為,,,M為AB的中點(diǎn).(1)求CM所在直線的方程;(2)求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

由題意知九節(jié)竹的容量成等差數(shù)列,至下而上各節(jié)的容量分別為a1,a2,…,an,公差為d,利用等差數(shù)列的前n項(xiàng)和公式和通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出中間一節(jié)的容量.【詳解】由題意知九節(jié)竹的容量成等差數(shù)列,至下而上各節(jié)的容量分別為a1,a2,…,a9,公差為d,即=4,=3,∴=4,=3,解得,,∴中間兩節(jié)的容量,,故選:D.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,利用等差數(shù)列的通項(xiàng)公式列出方程組,解出首項(xiàng)與公差即可,考查計(jì)算能力,屬于基礎(chǔ)題.2、B【解析】

將函數(shù)化為一個(gè)常數(shù)函數(shù)與一個(gè)奇函數(shù)的和,再利用奇函數(shù)的對(duì)稱性可得答案.【詳解】因?yàn)?,令,則,所以為奇函數(shù),所以,所以,故選:B【點(diǎn)睛】本題考查了兩角差的余弦公式,考查了奇函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題.3、B【解析】

根據(jù),在直線異側(cè)或其中一點(diǎn)在直線上列不等式求解即可.【詳解】因?yàn)橹本€與線段相交,所以,,在直線異側(cè)或其中一點(diǎn)在直線上,所以,解得或,故選B.【點(diǎn)睛】本題主要考查點(diǎn)與直線的位置關(guān)系,考查了一元二次不等式的解法,屬于基礎(chǔ)題.4、B【解析】

因?yàn)橼呌跓o(wú)窮大,故,分離常數(shù)即可得出極限.【詳解】解:因?yàn)榈耐?xiàng)公式,要求,即求故選:B【點(diǎn)睛】本題考查數(shù)列的極限,解答的關(guān)鍵是消去趨于無(wú)窮大的式子.5、D【解析】

根據(jù)兩個(gè)數(shù)列的單調(diào)性,可確定數(shù)列,也就確定了其中的最小項(xiàng).【詳解】由已知數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,且計(jì)算后知,又,∴數(shù)列中最小項(xiàng)的值是1.故選D.【點(diǎn)睛】本題考查數(shù)列的單調(diào)性,數(shù)列的最值.解題時(shí)依據(jù)題意確定大小即可.本題難度一般.6、A【解析】

由條件求出數(shù)列的公比.再利用等比數(shù)列的前項(xiàng)求和公式即可得出.【詳解】公比為正數(shù)的等比數(shù)列滿足:,則,即.所以,所以.故選:A【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.7、C【解析】

根據(jù)三角形滿足的兩個(gè)條件,設(shè)出三邊長(zhǎng)分別為,三個(gè)角分別為,利用正弦定理列出關(guān)系式,根據(jù)二倍角的正弦函數(shù)公式化簡(jiǎn)后,表示出,然后利用余弦定理得到,將表示出的代入,整理后得到關(guān)于的方程,求出方程的解得到的值,【詳解】解:設(shè)三角形三邊是連續(xù)的三個(gè)自然,三個(gè)角分別為,

由正弦定理可得:,

再由余弦定理可得:,

化簡(jiǎn)可得:,解得:或(舍去),

∴,故三角形的三邊長(zhǎng)分別為:,故選:C.【點(diǎn)睛】此題考查了正弦、余弦定理,以及二倍角的正弦函數(shù)公式,正弦、余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.8、C【解析】

首先由可得是異面直線和所成角,再由為正三角形即可求解.【詳解】連接.因?yàn)闉檎襟w,所以,則是異面直線和所成角.又,可得為等邊三角形,則,所以異面直線與所成角為,故選:C【點(diǎn)睛】本題考查異面直線所成的角,利用平行構(gòu)造三角形或平行四邊形是關(guān)鍵,考查了空間想象能力和推理能力,屬于中檔題.9、D【解析】

由,利用正弦定理可得,進(jìn)而可得sin2A=sin2B,由此可得結(jié)論.【詳解】∵,∴由正弦定理可得∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=∴△ABC的形狀是等腰三角形或直角三角形故選D.【點(diǎn)睛】判斷三角形形狀的常見(jiàn)方法是:(1)通過(guò)正弦定理和余弦定理,化邊為角,利用三角變換得出三角形內(nèi)角之間的關(guān)系進(jìn)行判斷;(2)利用正弦定理、余弦定理,化角為邊,通過(guò)代數(shù)恒等變換,求出邊與邊之間的關(guān)系進(jìn)行判斷;(3)根據(jù)余弦定理確定一個(gè)內(nèi)角為鈍角進(jìn)而知其為鈍角三角形.10、B【解析】

去掉最低分分,最高分分,利用平均數(shù)的計(jì)算公式求得,利用方差公式求得.【詳解】去掉最低分分,最高分分,得到數(shù)據(jù),該組數(shù)據(jù)的平均數(shù),.【點(diǎn)睛】本題考查從莖葉圖中提取信息,并對(duì)數(shù)據(jù)進(jìn)行加工和處理,考查基本的運(yùn)算求解和讀圖的能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用正切函數(shù)在單調(diào)遞增,求得的值域?yàn)?【詳解】因?yàn)楹瘮?shù)在單調(diào)遞增,所以,,故函數(shù)的值域?yàn)?【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性求值域,注意定義域、值域要寫成區(qū)間的形式.12、【解析】

如圖

分別作于A,于C,于B,于D,

連CQ,BD則,,

當(dāng)且僅當(dāng),即點(diǎn)A與點(diǎn)P重合時(shí)取最小值.

故答案選C.【點(diǎn)睛】13、【解析】

直接應(yīng)用數(shù)量積的運(yùn)算,求出與的夾角.【詳解】設(shè)向量、的夾角為;∵,∴,∵,∴.故答案為:.【點(diǎn)睛】本題考查向量的夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】

利用遞推關(guān)系,當(dāng)時(shí),,當(dāng)時(shí),,即可求出.【詳解】由題知:當(dāng)時(shí),.當(dāng)時(shí),.檢驗(yàn)當(dāng)時(shí),,所以.故答案為:【點(diǎn)睛】本題主要考查根據(jù)數(shù)列的前項(xiàng)和求數(shù)列的通項(xiàng)公式,體現(xiàn)了分類討論的思想,屬于簡(jiǎn)單題.15、【解析】,所以,解得.16、【解析】

根據(jù)同角三角函數(shù)的基本關(guān)系:,以及反三角函數(shù)即可解決?!驹斀狻坑深}意.故答案為:.【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,同角角三角函數(shù)基本關(guān)系主要有:,.屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)1;(2)【解析】

(1)利用向量數(shù)量積的定義求解;(2)先求模長(zhǎng)的平方,再進(jìn)行開(kāi)方可得.【詳解】(1)?=||||cos60°=2×1×=1;(2)|+|2=(+)2=+2?+=4+2×1+1=7.所以|+|=.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的定義及向量模長(zhǎng)的求解,一般地,求解向量模長(zhǎng)時(shí),先把模長(zhǎng)平方,化為數(shù)量積運(yùn)算進(jìn)行求解.18、(1);(2)圓錐體積,表面積【解析】

(1)由球的半徑可知圓柱底面半徑和高,代入球和圓柱的體積公式求得體積,作比得到結(jié)果;(2)由球的半徑可得圓錐底面半徑和高,從而可求解出圓錐母線長(zhǎng),代入圓錐體積和表面積公式可求得結(jié)果.【詳解】(1)設(shè)球的半徑為,則圓柱底面半徑為,高為球的體積;圓柱的體積球與圓柱的體積比為:(2)由題意可知:圓錐底面半徑為,高為圓錐的母線長(zhǎng):圓錐體積:圓錐表面積:【點(diǎn)睛】本題考查空間幾何體的表面積和體積求解問(wèn)題,考查學(xué)生對(duì)于體積和表面積公式的掌握,屬于基礎(chǔ)題.19、(1)(2)【解析】

(1)由已知及正弦定理可得sinC的值,利用大邊對(duì)大角可求C為銳角,根據(jù)同角三角函數(shù)基本關(guān)系式可求cosC的值.(2)利用三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式可求sinB的值,根據(jù)三角形的面積公式即可計(jì)算得解.【詳解】(1)由題意,BC=7,AB=3,∠A=60°.∴由正弦定理可得:sinC=∵BC>AB,∴C為銳角,∴cosC===,(2)因?yàn)锳+B+C=π,A=60°,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+=,∴S△ABC=BC?AB?sinB=.【點(diǎn)睛】本題主要考查了正弦定理,大邊對(duì)大角,同角三角函數(shù)基本關(guān)系式,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.20、(I);(II)【解析】

(I)由正弦定理得,展開(kāi)結(jié)合兩角和的正弦整理求解;(Ⅱ)由面積得,利用平方求解即可【詳解】(I),由正弦定理得整理得,則,,.(II),,兩邊平方得【點(diǎn)睛】本

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論