浙江省溫州市共美聯(lián)盟2025屆數(shù)學(xué)高一下期末綜合測試試題含解析_第1頁
浙江省溫州市共美聯(lián)盟2025屆數(shù)學(xué)高一下期末綜合測試試題含解析_第2頁
浙江省溫州市共美聯(lián)盟2025屆數(shù)學(xué)高一下期末綜合測試試題含解析_第3頁
浙江省溫州市共美聯(lián)盟2025屆數(shù)學(xué)高一下期末綜合測試試題含解析_第4頁
浙江省溫州市共美聯(lián)盟2025屆數(shù)學(xué)高一下期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省溫州市共美聯(lián)盟2025屆數(shù)學(xué)高一下期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最小值為()A. B. C. D.2.我國古代數(shù)學(xué)名著九章算術(shù)記載:“芻甍者,下有袤有廣,而上有袤無丈芻,草也;甍,屋蓋也”翻譯為:“底面有長有寬為矩形,頂部只有長沒有寬為一條棱芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形則它的體積為A. B.160 C. D.643.設(shè)等差數(shù)列{an}的前n項和為Sn.若a1+a3=6,S4=16,則a4=()A.6 B.7 C.8 D.94.在長方體中,,,則異面直線與所成角的余弦值為()A. B. C. D.5.某三棱錐的左視圖、俯視圖如圖所示,則該三棱錐的體積是()A.3 B.2 C. D.16.已知某線路公交車從6:30首發(fā),每5分鐘一班,甲、乙兩同學(xué)都從起點站坐車去學(xué)校,若甲每天到起點站的時間是在6:30~7:00任意時刻隨機到達,乙每天到起點站的時間是在6:45~7:15任意時刻隨機到達,那么甲、乙兩人搭乘同一輛公交車的概率是()A. B. C. D.7.不等式的解集是A.或 B.或C. D.8.已知函數(shù),若關(guān)于的不等式的解集為,則A. B.C. D.9.一條直線經(jīng)過點,并且它的傾斜角等于直線傾斜角的2倍,則這條直線的方程是()A. B.C. D.10.設(shè)等比數(shù)列的前項和為,且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若正實數(shù),滿足,則的最小值是________.12.____________.13.若是函數(shù)的兩個不同的零點,且這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則的值等于________.14.某中學(xué)初中部共有名老師,高中部共有名教師,其性別比例如圖所示,則該校女教師的人數(shù)為__________.15.利用數(shù)學(xué)歸納法證明不等式“”的過程中,由“”變到“”時,左邊增加了_____項.16.函數(shù)的最小正周期是____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某城市理論預(yù)測2020年到2025屆人口總數(shù)與年份的關(guān)系如下表所示:年份202x(年)01234人口數(shù)y(十萬)5781119(1)請在右面的坐標系中畫出上表數(shù)據(jù)的散點圖;(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;(3)據(jù)此估計2025年該城市人口總數(shù).(參考公式:,)18.如圖,在直三棱柱中,,,分別是,,的中點.(1)求證:平面;(2)若,求證:平面平面.19.如圖,墻上有一壁畫,最高點離地面4米,最低點離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角(1)若問:觀察者離墻多遠時,視角最大?(2)若當變化時,求的取值范圍.20.如圖,已知是半徑為1,圓心角為的扇形,是扇形狐上的動點,點分別在半徑上,且是平行四邊形,記,四邊形的面積為,問當取何值時,最大?的最大值是多少?21.如圖所示,某海輪以30海里/小時的速度航行,在A點測得海面上油井P在南偏東,向北航行40分鐘后到達點,測得油井P在南偏東,海輪改為北偏東的航向再行駛80分鐘到達C點,求P,C間的距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

令,即有,則,運用基本不等式即可得到所求最小值,注意等號成立的條件.【詳解】令,即有,則,當且僅當,即時,取得最小值.故選:【點睛】本題考查基本不等式,配湊法求解,屬于基礎(chǔ)題.2、A【解析】

分析:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù)可得其體積.詳解:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù),求出棱錐與棱柱的體積相加即可,,故選A.點睛:本題利用空間幾何體的三視圖重點考查學(xué)生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學(xué)生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側(cè)視圖,確定組合體的形狀.3、B【解析】

利用等差數(shù)列的性質(zhì)對已知條件進行化簡,由此求得的值.【詳解】依題意,解得.故選:B【點睛】本小題主要考查等差中項的性質(zhì),屬于基礎(chǔ)題.4、C【解析】

連接,交于,取的中點,連接、,可以證明是異面直線與所成角,利用余弦定理可求其余弦值.【詳解】連接,交于,取的中點,連接.由長方體可得四邊形為矩形,所以為的中點,因為為的中點,所以,所以或其補角是異面直線與所成角.在直角三角形中,則,,所以.在直角三角形中,,在中,,故選C.【點睛】空間中的角的計算,可以建立空間直角坐標系把角的計算歸結(jié)為向量的夾角的計算,也可以構(gòu)建空間角,把角的計算歸結(jié)平面圖形中的角的計算.5、D【解析】

根據(jù)三視圖高平齊的原則得知錐體的高,結(jié)合俯視圖可計算出底面面積,再利用錐體體積公式可得出答案.【詳解】由三視圖“高平齊”的原則可知該三棱錐的高為,俯視圖的面積為錐體底面面積,則該三棱錐的底面面積為,因此,該三棱錐的體積為,故選D.【點睛】本題考查利用三視圖求幾何體的體積,解題時充分利用三視圖“長對正,高平齊,寬相等”的原則得出幾何體的某些數(shù)據(jù),并判斷出幾何體的形狀,結(jié)合相關(guān)公式進行計算,考查空間想象能力,屬于中等題.6、D【解析】

根據(jù)甲、乙的到達時間,作出可行域,然后考慮甲、乙能同乘一輛公交車對應(yīng)的區(qū)域面積,根據(jù)幾何概型的概率求解方法即可求解出對應(yīng)概率.【詳解】設(shè)甲到起點站的時間為:時分,乙到起點站的時間為時分,所以,記事件為甲乙搭乘同一輛公交車,所以,作出可行域以及目標區(qū)域如圖所示:由幾何概型的概率計算可知:.故選:D.【點睛】本題考查利用線性規(guī)劃的可行域解決幾何概型中的面積模型問題,對于分析和轉(zhuǎn)化的能力要求較高,注意幾何概型中面積模型的概率計算方法,難度較難.7、C【解析】

把原不等式化簡為,即可求解不等式的解集.【詳解】由不等式即,即,得,則不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中把不等式對應(yīng)的一元二次方程能夠因式分解,即能夠轉(zhuǎn)化為幾個代數(shù)式的乘積形式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、B【解析】

由題意可得,且,3為方程的兩根,運用韋達定理可得,,的關(guān)系,可得的解析式,計算,(1),(4),比較可得所求大小關(guān)系.【詳解】關(guān)于的不等式的解集為,可得,且,3為方程的兩根,可得,,即,,,,可得,(1),(4),可得(4)(1),故選.【點睛】本題主要考查二次函數(shù)的圖象和性質(zhì)、函數(shù)與方程的思想,以及韋達定理的運用。9、B【解析】

先求出直線的傾斜角,進而得出所求直線的傾斜角和斜率,再根據(jù)點斜式寫直線的方程.【詳解】已知直線的斜率為,則傾斜角為,故所求直線的傾斜角為,斜率為,由直線的點斜式得,即。故選B.【點睛】本題考查直線的性質(zhì)與方程,屬于基礎(chǔ)題.10、C【解析】

由,,聯(lián)立方程組,求出等比數(shù)列的首項和公比,然后求.【詳解】解:若,則,顯然不成立,所以.由,,得,,所以,所以公比.所以.或者利用,所以.故選:C.【點睛】本題主要考查等比數(shù)列的前項和公式的應(yīng)用,要求熟練掌握,特別要注意對公比是否等于1要進行討論,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將配湊成,由此化簡的表達式,并利用基本不等式求得最小值.【詳解】由得,所以.當且僅當,即時等號成立.故填:.【點睛】本小題主要考查利用基本不等式求和式的最小值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.12、【解析】

在分式的分子和分母中同時除以,然后利用常見數(shù)列的極限可計算出所求極限值.【詳解】由題意得.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列的極限是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.13、1【解析】

由一元二次方程根與系數(shù)的關(guān)系得到a+b=p,ab=q,再由a,b,﹣2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列列關(guān)于a,b的方程組,求得a,b后得答案.【詳解】由題意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,則p+q=1.故答案為1.點評:本題考查了一元二次方程根與系數(shù)的關(guān)系,考查了等差數(shù)列和等比數(shù)列的性質(zhì),是基礎(chǔ)題.【思路點睛】解本題首先要能根據(jù)韋達定理判斷出a,b均為正值,當他們與-2成等差數(shù)列時,共有6種可能,當-2為等差中項時,因為,所以不可取,則-2只能作為首項或者末項,這兩種數(shù)列的公差互為相反數(shù);又a,b與-2可排序成等比數(shù)列,由等比中項公式可知-2必為等比中項,兩數(shù)列搞清楚以后,便可列方程組求解p,q.14、【解析】

由初中部、高中部男女比例的餅圖,初中部女老師占70%,高中部女老師占40%,分別算出女老師人數(shù),再相加.【詳解】初中部女老師占70%,高中部女老師占40%,該校女教師的人數(shù)為.【點睛】考查統(tǒng)計中讀圖能力,從圖中提取基本信息的基本能力.15、.【解析】

分析題意,根據(jù)數(shù)學(xué)歸納法的證明方法得到時,不等式左邊的表示式是解答該題的突破口,當時,左邊,由此將其對時的式子進行對比,得到結(jié)果.【詳解】當時,左邊,當時,左邊,觀察可知,增加的項數(shù)是,故答案是.【點睛】該題考查的是有關(guān)數(shù)學(xué)歸納法的問題,在解題的過程中,需要明確式子的形式,正確理解對應(yīng)式子中的量,認真分析,明確哪些項是添的,得到結(jié)果.16、【解析】

將三角函數(shù)化簡為標準形式,再利用周期公式得到答案.【詳解】由于所以【點睛】本題考查了三角函數(shù)的化簡,周期公式,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2);(3)2025年該城市人口總數(shù)為196萬人【解析】

(1)由表中數(shù)據(jù)描點即可;(2)由最小二乘法的公式得出的值,即可得出該線性方程;(3)將代入(2)中的線性方程,即可得出2025年該城市人口總數(shù).【詳解】(1)畫出散點圖如圖所示.(2),,,,,,則線性回歸方程.(3)時,(十萬)(萬).答:估計2025年該城市人口總數(shù)為196萬人【點睛】本題主要考查了繪制散點圖,求回歸直線方程以及根據(jù)回歸方程進行數(shù)據(jù)估計,屬于中檔題.18、(1)詳見解析(2)詳見解析【解析】

(1)利用中位線定理可得∥,從而得證;(2)先證明,從而有平面,進而可得平面平面.【詳解】(1)因為分別是的中點,所以∥.因為平面,平面,所以∥平面.(2)在直三棱柱中,平面,因為平面,所以.因為,且是的中點,所以.因為,平面,所以平面.因為平面,所以平面平面.【點睛】垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(1)(2)3≤x≤1.【解析】試題分析:(1)利用兩角差的正切公式建立函數(shù)關(guān)系式,根據(jù)基本不等式求最值,最后根據(jù)正切函數(shù)單調(diào)性確定最大時取法,(2)利用兩角差的正切公式建立等量關(guān)系式,進行參變分離得,再根據(jù)a的范圍確定范圍,最后解不等式得的取值范圍.試題解析:(1)當時,過作的垂線,垂足為,則,且,由已知觀察者離墻米,且,則,所以,,當且僅當時,取“”.又因為在上單調(diào)增,所以,當觀察者離墻米時,視角最大.(2)由題意得,,又,所以,所以,當時,,所以,即,解得或,又因為,所以,所以的取值范圍為.20、當時,最大,最大值為【解析】

設(shè),,在中,由余弦定理,基本不等式可得,根據(jù)三角形的面積公式即可求解.【詳解】解:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論