江蘇省揚州市高郵市汪曾祺校2023-2024學年中考一模數(shù)學試題含解析_第1頁
江蘇省揚州市高郵市汪曾祺校2023-2024學年中考一模數(shù)學試題含解析_第2頁
江蘇省揚州市高郵市汪曾祺校2023-2024學年中考一模數(shù)學試題含解析_第3頁
江蘇省揚州市高郵市汪曾祺校2023-2024學年中考一模數(shù)學試題含解析_第4頁
江蘇省揚州市高郵市汪曾祺校2023-2024學年中考一模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省揚州市高郵市汪曾祺校2023-2024學年中考一模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正確的是()A.a=b?cosA B.c=a?sinA C.a?cotA=b D.a?tanA=b2.如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.3.已知x1,x2是關于x的方程x2+ax-2b=0的兩個實數(shù)根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-14.的算術平方根是()A.4 B.±4 C.2 D.±25.據統(tǒng)計,第22屆冬季奧林匹克運動會的電視轉播時間長達88000小時,社交網站和國際奧委會官方網站也創(chuàng)下冬奧會收看率紀錄.用科學記數(shù)法表示88000為()A.0.88×105B.8.8×104C.8.8×105D.8.8×1066.已知x+=3,則x2+=()A.7 B.9 C.11 D.87.已知點,為是反比例函數(shù)上一點,當時,m的取值范圍是()A. B. C. D.8.有6個相同的立方體搭成的幾何體如圖所示,則它的主視圖是()A. B. C. D.9.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.210.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,邊長為4的正方形ABCD內接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認為正確結論的序號都填上)12.因式分解:________.13.如圖,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是_________.14.一輛汽車在坡度為的斜坡上向上行駛130米,那么這輛汽車的高度上升了__________米.15.已知關于x的方程x216.對于任意實數(shù)a、b,定義一種運算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請根據上述的定義解決問題:若不等式3※x<1,則不等式的正整數(shù)解是_____.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:(x﹣3)÷(﹣1),其中x=﹣1.18.(8分)如圖,將矩形OABC放在平面直角坐標系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標;(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(直接寫出結果即可).19.(8分)如圖,已知二次函數(shù)與x軸交于A、B兩點,A在B左側,點C是點A下方,且AC⊥x軸.(1)已知A(-3,0),B(-1,0),AC=OA.①求拋物線解析式和直線OC的解析式;②點P從O出發(fā),以每秒2個單位的速度沿x軸負半軸方向運動,Q從O出發(fā),以每秒個單位的速度沿OC方向運動,運動時間為t.直線PQ與拋物線的一個交點記為M,當2PM=QM時,求t的值(直接寫出結果,不需要寫過程)(2)過C作直線EF與拋物線交于E、F兩點(E、F在x軸下方),過E作EG⊥x軸于G,連CG,BF,求證:CG∥BF20.(8分)如圖,四邊形ABCD中,對角線AC、BD相交于點O,若AB,求證:四邊形ABCD是正方形21.(8分)網癮低齡化問題已經引起社會各界的高度關注,有關部門在全國范圍內對12﹣35歲的網癮人群進行了簡單的隨機抽樣調查,繪制出以下兩幅統(tǒng)計圖.請根據圖中的信息,回答下列問題:(1)這次抽樣調查中共調查了人;(2)請補全條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據報道,目前我國12﹣35歲網癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù)22.(10分)先化簡,再求值:,其中x=﹣1.23.(12分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.24.解不等式組并在數(shù)軸上表示解集.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有選項C正確,故選C.【點睛】本題考查了三角函數(shù)的定義,熟練掌握三角函數(shù)的定義并且靈活運用是解題的關鍵.2、D【解析】

連接EB,設圓O半徑為r,根據勾股定理可求出半徑r=4,從而可求出EB的長度,最后勾股定理即可求出CE的長度.利用銳角三角函數(shù)的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【點睛】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識,綜合程度較高,屬于中等題型.3、A【解析】

根據根與系數(shù)的關系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關于x的方程x2+ax﹣2b=0的兩實數(shù)根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.4、C【解析】

先求出的值,然后再利用算術平方根定義計算即可得到結果.【詳解】=4,4的算術平方根是2,所以的算術平方根是2,故選C.【點睛】本題考查了算術平方根,熟練掌握算術平方根的定義是解本題的關鍵.5、B【解析】試題分析:根據科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).因此,∵88000一共5位,∴88000=8.88×104.故選B.考點:科學記數(shù)法.6、A【解析】

根據完全平方公式即可求出答案.【詳解】∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故選A.【點睛】本題考查完全平方公式,解題的關鍵是熟練運用完全平方公式.7、A【解析】

直接把n的值代入求出m的取值范圍.【詳解】解:∵點P(m,n),為是反比例函數(shù)y=-圖象上一點,∴當-1≤n<-1時,∴n=-1時,m=1,n=-1時,m=1,則m的取值范圍是:1≤m<1.故選A.【點睛】此題主要考查了反比例函數(shù)圖象上點的坐標性質,正確把n的值代入是解題關鍵.8、C【解析】試題分析:根據主視圖是從正面看得到的圖形,可得答案.解:從正面看第一層三個小正方形,第二層左邊一個小正方形,右邊一個小正方形.故選C.考點:簡單組合體的三視圖.9、C【解析】

根據左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.10、B【解析】

過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據勾股定理得到AF===,根據平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質得到=,求得AM=AF=,根據相似三角形的性質得到=,求得AN=AF=,即可得到結論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構造相似三角形是本題的關鍵,且求長度問題一般需用到勾股定理來解決,常作垂線二、填空題(本大題共6個小題,每小題3分,共18分)11、①②④【解析】

①根據ASA可證△BOE≌△COF,根據全等三角形的性質得到BE=CF,根據等弦對等弧得到,可以判斷①;

②根據SAS可證△BOG≌△COH,根據全等三角形的性質得到∠GOH=90°,OG=OH,根據等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;

③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;

④根據△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設BG=x,則BH=4-x,根據勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

在△BOE與△COF中,,

∴△BOE≌△COF,

∴BE=CF,

∴,①正確;

②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,

∴△BOG≌△COH;

∴OG=OH,∵∠GOH=90°,

∴△OGH是等腰直角三角形,②正確.③如圖所示,

∵△HOM≌△GON,

∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;

④∵△BOG≌△COH,

∴BG=CH,

∴BG+BH=BC=4,

設BG=x,則BH=4-x,

則GH==,

∴其最小值為4+2,④正確.

故答案為:①②④【點睛】考查了圓的綜合題,關鍵是熟練掌握全等三角形的判定和性質,等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.12、n(m+2)(m﹣2)【解析】

先提取公因式n,再利用平方差公式分解即可.【詳解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案為n(m+2)(m﹣2).【點睛】本題主要考查了提取公因式法和公式法分解因式,熟練掌握平方差公式是解題關鍵13、.【解析】

延長FP交AB于M,當FP⊥AB時,點P到AB的距離最小.運用勾股定理求解.【詳解】解:如圖,延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。逜C=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴點P到邊AB距離的最小值是1-1.故答案為:1-1.【點睛】本題考查了翻折變換,涉及到的知識點有直角三角形兩銳角互余、勾股定理等,解題的關鍵是確定出點P的位置.14、50.【解析】

根據坡度的定義可以求得AC、BC的比值,根據AC、BC的比值和AB的長度即可求得AC的值,即可解題.【詳解】解:如圖,米,設,則,則,解得,故答案為:50.【點睛】本題考查了勾股定理在直角三角形中的運用,坡度的定義及直角三角形中三角函數(shù)值的計算,屬于基礎題.15、m<9【解析】試題分析:若一元二次方程有兩個不相等的實數(shù)根,則根的判別式△=b2﹣4ac>0,建立關于m的不等式,解不等式即可求出m的取值范圍.∵關于x的方程x2﹣6x+m=0有兩個不相等的實數(shù)根,∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0,解得:m<1.考點:根的判別式.16、2【解析】【分析】根據新定義可得出關于x的一元一次不等式,解之取其中的正整數(shù)即可得出結論.【詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數(shù),∴x=2,故答案為:2.【點睛】本題考查一元一次不等式的整數(shù)解以及實數(shù)的運算,通過解不等式找出x<是解題的關鍵.三、解答題(共8題,共72分)17、﹣x+1,2.【解析】

先將括號內的分式通分,再將乘方轉化為乘法,約分,最后代入數(shù)值求解即可.【詳解】原式=(x﹣2)÷(﹣)=(x﹣2)÷=(x﹣2)?=﹣x+1,當x=﹣1時,原式=1+1=2.【點睛】本題考查了整式的混合運算-化簡求值,解題的關鍵是熟練的掌握整式的混合運算法則.18、(1)1;(2)點D(8﹣23,0);(3)點D的坐標為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點B的坐標知OA=8、AB=1、OB=10,根據折疊性質可得BA=BA′=1,據此可得答案;(Ⅱ)連接AA′,利用折疊的性質和中垂線的性質證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當點D在OA上時.由旋轉知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當點D在AO延長線上時,過點A′作x軸的平行線交y軸于點M,延長AB交所作直線于點N,則BN=CM,MN=BC=OA=8,由旋轉知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點D的坐標為(﹣35﹣1,0).綜上,點D的坐標為(35﹣1,0)或(﹣35﹣1,0).點睛:本題主要考查四邊形的綜合問題,解題的關鍵是熟練掌握折疊變換的性質、矩形的性質、相似三角形的判定與性質及勾股定理等知識點.19、(1)①y=-x2-4x-3;y=x;②t=或;(2)證明見解析.【解析】

(1)把A(-3,0),B(-1,0)代入二次函數(shù)解析式即可求出;由AC=OA知C點坐標為(-3,-3),故可求出直線OC的解析式;②由題意得OP=2t,P(-2t,0),過Q作QH⊥x軸于H,得OH=HQ=t,可得Q(-t,-t),直線PQ為y=-x-2t,過M作MG⊥x軸于G,由,則2PG=GH,由,得,于是,解得,從而求出M(-3t,t)或M(),再分情況計算即可;(2)過F作FH⊥x軸于H,想辦法證得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得證.【詳解】解:(1)①把A(-3,0),B(-1,0)代入二次函數(shù)解析式得解得∴y=-x2-4x-3;由AC=OA知C點坐標為(-3,-3),∴直線OC的解析式y(tǒng)=x;②OP=2t,P(-2t,0),過Q作QH⊥x軸于H,∵QO=,∴OH=HQ=t,∴Q(-t,-t),∴PQ:y=-x-2t,過M作MG⊥x軸于G,∴,∴2PG=GH∴,即,∴,∴,∴M(-3t,t)或M()當M(-3t,t)時:,∴當M()時:,∴綜上:或(2)設A(m,0)、B(n,0),∴m、n為方程x2-bx-c=0的兩根,∴m+n=b,mn=-c,∴y=-x2+(m+n)x-mn=-(x-m)(x-n),∵E、F在拋物線上,設、,設EF:y=kx+b,∴,∴∴∴,令x=m∴=∴AC=,又∵,∴tan∠CAG=,另一方面:過F作FH⊥x軸于H,∴,,∴tan∠FBH=∴tan∠CAG=tan∠FBH∴∠CAG=∠FBH∴CG∥BF【點睛】此題主要考查二次函數(shù)的綜合問題,解題的關鍵是熟知相似三角形的判定與性質及正確作出輔助線進行求解.20、詳見解析.【解析】

四邊形ABCD是正方形,利用已知條件先證明四邊形ABCD是平行四邊形,再證明四邊形ABCD是矩形,再根據對角線垂直的矩形是正方形即可證明四邊形ABCD是正方形.【詳解】證明:在四邊形ABCD中,OA=OC,OB=OD,∴四邊形ABCD是平行四邊形,∵OA=OB=OC=OD,又∵AC=AO+OC,BD=OB+DO,∴AC=BD,∴平行四邊形是矩形,在△AOB中,,∴△AOB是直角三角形,即AC⊥BD,∴矩形ABCD是正方形.【點睛】本題考查了平行四邊形的判定、矩形的判定、正方形的判定以及勾股定理的運用和勾股定理的逆定理的運用,題目的綜合性很強.21、(1)1500;(2)見解析;(3)108°;(3)12~23歲的人數(shù)為400萬【解析】試題分析:(1)根據30-35歲的人數(shù)和所占的百分比求調查的人數(shù);(2)從調查的總人數(shù)中減去已知的三組的人數(shù),即可得到12-17歲的人數(shù),據此補全條形統(tǒng)計圖;(3)先計算18-23歲的人數(shù)占調查總人數(shù)的百分比,再計算這一組所對應的圓心角的度數(shù);(4)先計算調查中12﹣23歲的人數(shù)所占的百分比,再求網癮人數(shù)約為2000

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論