版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
貴州省百所學(xué)校新高考沖刺六數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若存在實數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.2.為研究語文成績和英語成績之間是否具有線性相關(guān)關(guān)系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標(biāo)軸單位長度相同),用回歸直線近似地刻畫其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A.線性相關(guān)關(guān)系較強(qiáng),b的值為1.25B.線性相關(guān)關(guān)系較強(qiáng),b的值為0.83C.線性相關(guān)關(guān)系較強(qiáng),b的值為-0.87D.線性相關(guān)關(guān)系太弱,無研究價值3.如果直線與圓相交,則點與圓C的位置關(guān)系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內(nèi) D.上述三種情況都有可能4.若,則的值為()A. B. C. D.5.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準(zhǔn)線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③6.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點相同,則雙曲線漸近線方程為()A. B.C. D.7.已知,,,,則()A. B. C. D.8.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件9.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為()A. B.C. D.10.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.211.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.12.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽(yù)為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在三棱錐中,平面,,已知,,則當(dāng)最大時,三棱錐的體積為__________.14.已知,,其中,為正的常數(shù),且,則的值為_______.15.正四面體的各個點在平面同側(cè),各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.16.若函數(shù)在和上均單調(diào)遞增,則實數(shù)的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.18.(12分)數(shù)列的前項和為,且.數(shù)列滿足,其前項和為.(1)求數(shù)列與的通項公式;(2)設(shè),求數(shù)列的前項和.19.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.20.(12分)已知拋物線,直線與交于,兩點,且.(1)求的值;(2)如圖,過原點的直線與拋物線交于點,與直線交于點,過點作軸的垂線交拋物線于點,證明:直線過定點.21.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.22.(10分)在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程和曲線的參數(shù)方程;(2)設(shè)曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)實數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,∴,∴.故選:A.【點睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.2、B【解析】
根據(jù)散點圖呈現(xiàn)的特點可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【詳解】散點圖里變量的對應(yīng)點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強(qiáng)的線性相關(guān)關(guān)系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側(cè)重考查讀圖識圖能力和邏輯推理的核心素養(yǎng).3、B【解析】
根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關(guān)系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質(zhì),考查點到直線距離公式的應(yīng)用,屬于中檔題.4、C【解析】
根據(jù),再根據(jù)二項式的通項公式進(jìn)行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應(yīng)用,考查了二項式展開式通項公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力5、B【解析】
由題意,可設(shè)直線的方程為,利用韋達(dá)定理判斷第一個結(jié)論;將代入拋物線的方程可得,,從而,,進(jìn)而判斷第二個結(jié)論;設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點到準(zhǔn)線的距離為,顯然,,三點不共線,進(jìn)而判斷第三個結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點,的坐標(biāo)分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對稱性可知,,兩點關(guān)于軸對稱,所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點到準(zhǔn)線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.6、A【解析】
由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.【點睛】本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程的求法,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.7、D【解析】
令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.8、B【解析】
由數(shù)量積的定義可得,為實數(shù),則由可得,根據(jù)共線的性質(zhì),可判斷;再根據(jù)判斷,由等價法即可判斷兩命題的關(guān)系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.9、A【解析】
設(shè)橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設(shè),在中,由余弦定理得:,化簡得,即.故選:A【點睛】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.10、D【解析】
如圖所示建立直角坐標(biāo)系,設(shè),則,計算得到答案.【詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標(biāo)系利用坐標(biāo)計算是解題的關(guān)鍵.11、A【解析】
作出不等式組表示的可行域,然后對四個選項一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當(dāng)時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.12、A【解析】
計算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【點睛】本題考查了復(fù)數(shù)的計算,意在考查學(xué)生的計算能力和理解能力.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】設(shè),則,,,,當(dāng)且僅當(dāng),即時,等號成立.,故答案為414、【解析】
把已知等式變形,展開兩角和與差的三角函數(shù),結(jié)合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.【點睛】本題考查兩角和與差的三角函數(shù),考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.15、【解析】
不妨設(shè)點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),根據(jù)題意F為中點,E為AB的三等分點(靠近點A),設(shè)棱長為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設(shè)棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運(yùn)算求解的能力,屬于難題,16、【解析】
化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【詳解】由知,當(dāng)時,在和上單調(diào)遞增,在和上均單調(diào)遞增,,
,
的取值范圍為:.
故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)連結(jié)BM,推導(dǎo)出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進(jìn)而AA1⊥平面BCM,AA1⊥MB,推導(dǎo)出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導(dǎo)出△ABA1是等腰直角三角形,設(shè)AB,則AA1=2a,BM=AM=a,推導(dǎo)出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標(biāo)原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結(jié),因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結(jié),,因為是的中點,則且,所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1)(圖2)(2)因為,所以是等腰直角三角形,設(shè),則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標(biāo)原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系,則,,.所以,則,,設(shè)平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量為,則.因為二面角為鈍角,所以二面角的余弦值為.【點睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.18、(1),;(2).【解析】
(1)令可求得的值,令,由得出,兩式相減可推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求得數(shù)列的通項公式,再利用對數(shù)的運(yùn)算性質(zhì)可得出數(shù)列的通項公式;(2)運(yùn)用等差數(shù)列的求和公式,運(yùn)用數(shù)列的分組求和和裂項相消求和,化簡可得.【詳解】(1)當(dāng)時,,所以;當(dāng)時,,得,即,所以,數(shù)列是首項為,公比為的等比數(shù)列,.;(2)由(1)知數(shù)列是首項為,公差為的等差數(shù)列,.,.所以.【點睛】本題考查數(shù)列的遞推式的運(yùn)用,注意結(jié)合等比數(shù)列的定義和通項公式,考查數(shù)列的求和方法:分組求和法和裂項相消求和,考查運(yùn)算能力,屬于中檔題.19、(1);(2)見解析.【解析】
(1)根據(jù)題意得出關(guān)于、、的方程組,解出、的值,進(jìn)而可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點、、,設(shè)直線的方程為,將該直線的方程與橢圓的方程聯(lián)立,并列出韋達(dá)定理,由向量的坐標(biāo)運(yùn)算可求得點的坐標(biāo)表達(dá)式,并代入韋達(dá)定理,消去,可得出點的橫坐標(biāo),進(jìn)而可得出結(jié)論.【詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設(shè)直線的方程為,、、,由,得.,則有,,由,得,由,可得,,,綜上,點在定直線上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線上的證明,考查計算能力與推理能力,屬于中等題.20、(1);(2)見解析【解析】
(1)聯(lián)立直線和拋物線,消去可得,求出,,再代入弦長公式計算即可.(2)由(1)可得,設(shè),計算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計算直線的斜率,求出直線的方程,化簡可得到恒過的定點.【詳解】(1)由,消去可得,設(shè),,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 獨立董事2025年度履職評價與激勵措施合同3篇
- 二零二五年度禾青幼兒園教玩具采購與幼兒園設(shè)施維護(hù)合同3篇
- 二零二五搬家公司合同模板:搬家保險責(zé)任與賠償條款2篇
- 二零二五版物流行業(yè)預(yù)付款擔(dān)保合同2篇
- 二零二五版搬家服務(wù)與家政服務(wù)融合合同樣本2篇
- 二零二五年度蔬菜電子商務(wù)合同:線上銷售平臺與賣家之間的規(guī)則2篇
- 二零二五版汽車零部件購銷合同標(biāo)準(zhǔn)及售后服務(wù)模板3篇
- 二零二五年度國際教育機(jī)構(gòu)合作辦學(xué)合同3篇
- 二零二五年度高壓變壓器安裝及安全防護(hù)技術(shù)合同3篇
- 二零二五版社保繳納與工傷保險待遇保障合同3篇
- ICU常見藥物課件
- CNAS實驗室評審不符合項整改報告
- 農(nóng)民工考勤表(模板)
- 承臺混凝土施工技術(shù)交底
- 臥床患者更換床單-軸線翻身
- 計量基礎(chǔ)知識培訓(xùn)教材201309
- 中考英語 短文填詞、選詞填空練習(xí)
- 一汽集團(tuán)及各合資公司組織架構(gòu)
- 阿特拉斯基本擰緊技術(shù)ppt課件
- 初一至初三數(shù)學(xué)全部知識點
- 新課程理念下的班主任工作藝術(shù)
評論
0/150
提交評論