山東省青島市即墨區(qū)重點(diǎn)高中2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第1頁(yè)
山東省青島市即墨區(qū)重點(diǎn)高中2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第2頁(yè)
山東省青島市即墨區(qū)重點(diǎn)高中2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第3頁(yè)
山東省青島市即墨區(qū)重點(diǎn)高中2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第4頁(yè)
山東省青島市即墨區(qū)重點(diǎn)高中2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省青島市即墨區(qū)重點(diǎn)高中2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知某幾何體的三視圖是如圖所示的三個(gè)直角三角形,則該幾何體的外接球的表面積為()A.17π B.34π C.51π D.68π2.若直線l:ax+by=1(a>0,b>0)平分圓x2+y2﹣x﹣2y=0,則的最小值為()A. B.2 C. D.3.已知、是不重合的平面,a、b、c是兩兩互不重合的直線,則下列命題:①;②;③.其中正確命題的個(gè)數(shù)是()A.3 B.2 C.1 D.04.已知向量,且,則()A.2 B. C. D.5.已知三角形為等邊三角形,,設(shè)點(diǎn)滿足,若,則()A. B. C. D.6.已知銳角三角形的邊長(zhǎng)分別為1,3,,則的取值范圍是()A. B. C. D.7.等差數(shù)列{an}中,若S1=1A.2019 B.1 C.1009 D.10108.設(shè)是等差數(shù)列的前項(xiàng)和,若,則()A. B. C. D.9.若,且,,則()A. B. C. D.10.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂平面內(nèi),已知飛機(jī)的高度為海拔20000m,速度為900km/h,飛行員先看到山頂?shù)母┙菫?0°,經(jīng)過(guò)80s后又看到山頂?shù)母┙菫?5A.5000(3+1)C.5000(3-3)二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,若,則實(shí)數(shù)________.12.等比數(shù)列的公比為,其各項(xiàng)和,則______________.13.已知等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項(xiàng)和=________.14.將一個(gè)圓錐截成圓臺(tái),已知截得的圓臺(tái)的上、下底面面積之比是1:4,截去的小圓錐母線長(zhǎng)為2,則截得的圓臺(tái)的母線長(zhǎng)為________.15.已知數(shù)列滿足:,,則_____.16.已知公式,,借助這個(gè)公式,我們可以求函數(shù)的值域,則該函數(shù)的值域是______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知向量是夾角為的單位向量,,(1)求;(2)當(dāng)m為何值時(shí),與平行?18.如圖,在平面四邊形中,已知,,在上取點(diǎn),使得,連接,若,。(1)求的值;(2)求的長(zhǎng)。19.已知△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面積的最大值.20.設(shè)函數(shù),其中,.(1)求的周期及單調(diào)遞減區(qū)間;(2)若關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.21.已知△ABC的頂點(diǎn)A4,3,AB邊上的高所在直線為x-y-3=0,D為AC中點(diǎn),且BD所在直線方程為3x+y-7=0(1)求頂點(diǎn)B的坐標(biāo);(2)求BC邊所在的直線方程。

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

由三視圖還原出原幾何體,得幾何體的結(jié)構(gòu)(特別是垂直關(guān)系),從而確定其外接球球心位置,得球半徑.【詳解】由三視圖知原幾何體是三棱錐,如圖,平面,平面.由這兩個(gè)線面垂直,得,因此的中點(diǎn)到四頂點(diǎn)的距離相等,即為外接球球心.由三視圖得,,∴.故選:B.【點(diǎn)睛】本題考查三棱錐外接球表面積,考查三視圖.解題關(guān)鍵是由三視圖還原出原幾何體,確定幾何體的結(jié)構(gòu),找到外接球球心.2、C【解析】

求得圓心,代入直線的方程,然后利用基本不等式求得的最小值.【詳解】圓的圓心為,由于直線平分圓,故圓心在直線上,即,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故選:C【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查利用基本不等式求最小值.3、C【解析】

由面面垂直的判定定理,可得①正確;利用列舉所有可能,即可判斷②③錯(cuò)誤.【詳解】①由面面垂直的判定定理,∵,a?β,∴α⊥β,故正確;

②,則平行,相交,異面都有可能,故不正確;

③,則與α平行,相交都有可能,故不正確.

故選:C.【點(diǎn)睛】本題主要考查線面關(guān)系的判斷,考查的空間想象能力,屬于基礎(chǔ)題.判斷線面關(guān)系問(wèn)題首先要熟練掌握有關(guān)定理、推論,其次可以利用特殊位置排除錯(cuò)誤結(jié)論.4、B【解析】

根據(jù)向量平行得到,再利用和差公式計(jì)算得到答案.【詳解】向量,且,則..故選:.【點(diǎn)睛】本題考查了向量平行求參數(shù),和差公式,意在考查學(xué)生的綜合應(yīng)用能力.5、D【解析】

用三角形的三邊表示出,再根據(jù)已知的邊的關(guān)系可得到關(guān)于的方程,解方程即得?!驹斀狻坑深}得,,,整理得,化簡(jiǎn)得,解得.故選:D【點(diǎn)睛】本題考查平面向量的線性運(yùn)算及平面向量基本定理,是常考題型。6、B【解析】

根據(jù)大邊對(duì)大角定理知邊長(zhǎng)為所對(duì)的角不是最大角,只需對(duì)其他兩條邊所對(duì)的利用余弦定理,即這兩角的余弦值為正,可求出的取值范圍.【詳解】由題意知,邊長(zhǎng)為所對(duì)的角不是最大角,則邊長(zhǎng)為或所對(duì)的角為最大角,只需這兩個(gè)角為銳角即可,則這兩個(gè)角的余弦值為正數(shù),于此得到,由于,解得,故選C.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,在考查三角形是銳角三角形、直角三角形還是鈍角三角形,一般由最大角來(lái)決定,并利用余弦定理結(jié)合余弦值的符號(hào)來(lái)進(jìn)行轉(zhuǎn)化,其關(guān)系如下:為銳角;為直角;為鈍角.7、D【解析】

由等差數(shù)列{an}中,S1=1,S【詳解】∵等差數(shù)列{an}中,S∴S即15=5+10d,解得d=1,∴S故選:D.【點(diǎn)睛】本題考查等差數(shù)列基本量的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.8、D【解析】

根據(jù)等差數(shù)列片斷和的性質(zhì)得出、、、成等差數(shù)列,并將和都用表示,可得出的值.【詳解】根據(jù)等差數(shù)列的性質(zhì),若數(shù)列為等差數(shù)列,則也成等差數(shù)列;又,則數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,則,故選D.【點(diǎn)睛】本題考查等差數(shù)列片斷和的性質(zhì),再利用片斷和的性質(zhì)時(shí),要注意下標(biāo)之間的倍數(shù)關(guān)系,結(jié)合性質(zhì)進(jìn)行求解,考查運(yùn)算求解能力,屬于中等題.9、B【解析】

利用兩角和差的正弦公式將β=α-(α﹣β)進(jìn)行轉(zhuǎn)化求解即可.【詳解】β=α-(α﹣β),∵<α,<β,β<,∴α,∵sin()0,∴<0,則cos(),∵sinα,∴cosα,則sinβ=sin[α-(α﹣β)]=sinαcos(α﹣β)-cosαsin(α﹣β)(),故選B【點(diǎn)睛】本題主要考查利用兩角和差的正弦公式,同角三角函數(shù)基本關(guān)系,將β=α-(α﹣β)進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵,是基礎(chǔ)題10、C【解析】分析:先求AB的長(zhǎng),在△ABC中,可求BC的長(zhǎng),進(jìn)而由于CD⊥AD,所以CD=BCsin∠CBD,故可得山頂?shù)暮0胃叨龋斀猓喝鐖D,∠A=30°,∠ACB=45°,

AB=900×80×13600∴在△ABC中,BC=102∵CD⊥AD,=102sin30點(diǎn)睛:本題以實(shí)際問(wèn)題為載體,考查正弦定理的運(yùn)用,關(guān)鍵是理解俯角的概念,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2或【解析】

根據(jù)向量平行的充要條件代入即可得解.【詳解】由有:,解得或.故答案為:2或.【點(diǎn)睛】本題考查了向量平行的應(yīng)用,屬于基礎(chǔ)題.12、【解析】

利用等比數(shù)列各項(xiàng)和公式可得出關(guān)于的方程,解出即可.【詳解】由于等比數(shù)列的公比為,其各項(xiàng)和,可得,解得.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列中基本量的計(jì)算,利用等比數(shù)列各項(xiàng)和公式列等式是關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.13、【解析】試題分析:根據(jù)題意,由于等比數(shù)列中,,,則可知公比為,那么可知等比數(shù)列中,,,故可知,那么可知數(shù)列的前項(xiàng)和=1=,故可知答案為.考點(diǎn):等比數(shù)列點(diǎn)評(píng):主要是考查了等比數(shù)列的通項(xiàng)公式以及數(shù)列的求和的運(yùn)用,屬于基礎(chǔ)題.14、2【解析】

由截得圓臺(tái)上,下底面積之比可得上,下底面半徑之比,再根據(jù)小圓錐的母線即可得圓臺(tái)母線.【詳解】設(shè)截得的圓臺(tái)的母線長(zhǎng)為.因?yàn)榻氐玫膱A臺(tái)的上、下底面面積之比是1:4,所以截得的圓臺(tái)的上、下底面半徑之比是1:2.因?yàn)榻厝サ男A錐母線長(zhǎng)為2,所以,解得.【點(diǎn)睛】本題考查求圓臺(tái)的母線,屬于基礎(chǔ)題.15、【解析】

從開始,直接代入公式計(jì)算,可得的值.【詳解】解:由題意得:,,,,故答案為:.【點(diǎn)睛】本題主要考查數(shù)列的遞推公式及數(shù)列的性質(zhì),相對(duì)簡(jiǎn)單.16、【解析】

根據(jù)題意,可令,結(jié)合,再進(jìn)行整體代換即可求解【詳解】令,則,,,則,,,則函數(shù)值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題考查3倍角公式的使用,函數(shù)的轉(zhuǎn)化思想,屬于中檔題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)1;(2)﹣6【解析】

(1)利用單位向量的定義,直接運(yùn)算即可;(2)利用,有,得出,然后列方程求解即可【詳解】解:(1);(2)當(dāng),則存在實(shí)數(shù)使,所以不共線,得,【點(diǎn)睛】本題考查向量平行的定義,注意列方程運(yùn)算即可,屬于簡(jiǎn)單題18、(1);(2).【解析】試題分析:(1)在中,直接由正弦定理求出;(2)在中,,,可求出,在中,直接由余弦定理可求得.試題解析:(1)在中,據(jù)正弦定理,有.∵,,,∴.(2)由平面幾何知識(shí),可知,在中,∵,,∴.∴.在中,據(jù)余弦定理,有∴點(diǎn)睛:此題考查了正弦定理、余弦定理的應(yīng)用,利用正弦、余弦定理可以很好得解決了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵.在中,涉及三邊三角,知三(除已知三角外)求三,可解出三角形,當(dāng)涉及兩邊及其中一邊的對(duì)角或兩角及其中一角對(duì)邊時(shí),運(yùn)用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時(shí),運(yùn)用余弦定理求解.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用正弦定理,三角函數(shù)恒等變換,可得,結(jié)合范圍,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面積公式即可求解;方法2:由正弦定理可得,,并將其代入可得,然后再化簡(jiǎn),根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求得面積的最大值.【詳解】解:(I)因?yàn)?,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以當(dāng)且僅當(dāng)時(shí)取等號(hào),所以△ABC面積的最大值為方法2:因?yàn)椋?,,所以,所以,?dāng)且僅當(dāng),即,當(dāng)時(shí)取等號(hào).所以△ABC面積的最大值為.【點(diǎn)睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.20、(1),;(2)【解析】

(1)利用坐標(biāo)形式下向量的數(shù)量積運(yùn)算以及二倍角公式、輔助角公式將化簡(jiǎn)為的形式,根據(jù)周期計(jì)算公式以及單調(diào)性求解公式即可得到結(jié)果;(2)分析在的值域,根據(jù)能成立的思想得到與滿足的不等關(guān)系,求解出的范圍即可.【詳解】(1)∵,∴,∴的周期為,令,則,的單調(diào)遞減區(qū)間為(2)∵,∴,在上遞增,在上遞減,且,∴,∴,即,若在上有解,則故:,解得.【點(diǎn)睛】本題考查向量與三角函函數(shù)的綜合應(yīng)用,其中著重考查了使用三角恒等變換進(jìn)行化簡(jiǎn)以及利用正弦函數(shù)的性質(zhì)分析值域從而求解參數(shù)范圍,對(duì)于轉(zhuǎn)化與計(jì)算的能力要求較高,難度一般.21、(1)B(0,7)(2)19x+y-7=0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論