版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山西省范亭中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若實數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.02.已知圓和圓只有一條公切線,若,且,則的最小值為()A.2 B.4 C.8 D.93.如圖,在三角形中,點是邊上靠近的三等分點,則()A. B.C. D.4.己知ΔABC中,角A,B,C所對的邊分別是a,b,c.若A=45°,B=30°,a=2,則bA.3-1 B.1 C.2 D.5.為了得到函數(shù)的圖像,只需把函數(shù)的圖像A.向左平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向右平移個長度單位6.已知,其中,若函數(shù)在區(qū)間內(nèi)有零點,則實數(shù)的取值可能是()A. B. C. D.7.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:“一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈多少?”現(xiàn)有類似問題:一座5層塔共掛了363盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的3倍,則塔的底層共有燈A.81盞 B.112盞 C.162盞 D.243盞8.為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,,第五組,如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為()A.6 B.8 C.12 D.189.已知等差數(shù)列中,若,則()A.-21 B.-15 C.-12 D.-1710.底面是正方形,從頂點向底面作垂線,垂足是底面中心的四棱錐稱為正四棱錐.如圖,在正四棱錐中,底面邊長為1.側(cè)棱長為2,E為PC的中點,則異面直線PA與BE所成角的余弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓及點,若滿足:存在圓C上的兩點P和Q,使得,則實數(shù)m的取值范圍是________.12.用線性回歸某型求得甲、乙、丙3組不同的數(shù)據(jù)的線性關(guān)系數(shù)分別為0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一個)組數(shù)據(jù)的線性關(guān)系性最強。13.設(shè)向量,,______.14.在中,分別是角的對邊,,且的周長為5,面積,則=______15.在銳角△中,角所對應(yīng)的邊分別為,若,則角等于________.16.已知函數(shù)的最小正周期為,若將該函數(shù)的圖像向左平移個單位后,所得圖像關(guān)于原點對稱,則的最小值為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,令(1)求證數(shù)列為等比數(shù)列,并求通項公式;(2)求數(shù)列的前n項和.18.李克強總理在2018年政府工作報告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應(yīng)政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:單價(千元)銷量(百件)已知.(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;(2)用(1)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計值.(參考公式:線性回歸方程中的估計值分別為)19.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)當(dāng)時,求函數(shù)的最大值和最小值.20.足球,有“世界第一運動的美譽,是全球體育界最具影響力的單項體育運動之一.足球傳球是足球運動技術(shù)之一,是比賽中組織進攻、組織戰(zhàn)術(shù)配合和進行射門的主要手段.足球截球也是足球運動技術(shù)的一種,是將對方控制或傳出的球占為己有,或破壞對方對球的控制的技術(shù),是比賽中由守轉(zhuǎn)攻的主要手段.這兩種運動技術(shù)都需要球運動員的正確判斷和選擇.現(xiàn)有甲、乙兩隊進行足球友誼賽,A、B兩名運動員是甲隊隊員,C是乙隊隊員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現(xiàn)A沿北偏西60°方向水平傳球,球速為10m/s,同時B沿北偏西30°方向以10m/s的速度前往接球,C同時也以10m/s的速度前去截球.假設(shè)球與B、C都在同一平面運動,且均保持勻速直線運動.(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請說明理由.(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請說明理由.21.已知函數(shù).(1)若,求函數(shù)有零點的概率;(2)若,求成立的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時函數(shù)取最大值為故答案選C【點睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最??;當(dāng)時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.2、D【解析】
由題意可得兩圓相內(nèi)切,根據(jù)兩圓的標(biāo)準(zhǔn)方程求出圓心和半徑,可得,再利用“1”的代換,使用基本不等式求得的最小值.【詳解】解:由題意可得兩圓相內(nèi)切,兩圓的標(biāo)準(zhǔn)方程分別為,,圓心分別為,,半徑分別為2和1,故有,,,當(dāng)且僅當(dāng)時,等號成立,的最小值為1.故選:.【點睛】本題考查兩圓的位置關(guān)系,兩圓相內(nèi)切的性質(zhì),圓的標(biāo)準(zhǔn)方程的特征,基本不等式的應(yīng)用,得到是解題的關(guān)鍵和難點.3、A【解析】
利用向量的三角形法則以及線性運算法則進行運算,即可得出結(jié)論.【詳解】因為點是邊上靠近的三等分點,所以,所以,故選:A.【點睛】本題考查向量的加?減法以及數(shù)乘運算,需要學(xué)生熟練掌握三角形法則和共線定理.4、B【解析】
由正弦定理可得.【詳解】∵asinA=故選B.【點睛】本題考查正弦定理,解題時直接應(yīng)用正弦定理可解題,本題屬于基礎(chǔ)題.5、B【解析】試題分析:記函數(shù),則函數(shù)∵函數(shù)f(x)圖象向右平移單位,可得函數(shù)的圖象∴把函數(shù)的圖象右平移單位,得到函數(shù)的圖象,故選B.考點:函數(shù)y=Asin(ωx+φ)的圖象變換.6、D【解析】
求出函數(shù),令,,根據(jù)不等式求解,即可得到可能的取值.【詳解】由題:,其中,令,,若函數(shù)在區(qū)間內(nèi)有零點,則有解,解得:當(dāng)當(dāng)當(dāng)結(jié)合四個選項可以分析,實數(shù)的取值可能是.故選:D【點睛】此題考查根據(jù)函數(shù)零點求參數(shù)的取值范圍,需要熟練掌握三角函數(shù)的圖像性質(zhì),求出函數(shù)零點再討論其所在區(qū)間列不等式求解.7、D【解析】
從塔頂?shù)剿酌繉訜舯K數(shù)可構(gòu)成一個公比為3的等比數(shù)列,其和為1.由等比數(shù)列的知識可得.【詳解】從塔頂?shù)剿酌繉訜舯K數(shù)依次記為a1,a2,a3故選D.【點睛】本題考查等比數(shù)列的應(yīng)用,解題關(guān)鍵是根據(jù)實際意義構(gòu)造一個等比數(shù)列,把問題轉(zhuǎn)化為等比數(shù)列的問題.8、C【解析】試題分析:由直方圖可得分布在區(qū)間第一組與第二組共有21人,分布在區(qū)間第一組與第二組的頻率分別為1.24,1.16,所以第一組有12人,第二組8人,第三組的頻率為1.36,所以第三組的人數(shù):18人,第三組中沒有療效的有6人,第三組中有療效的有12人.考點:頻率分布直方圖9、A【解析】
根據(jù)等差數(shù)列的前n項和公式得:,故選A.10、B【解析】
可采用建立空間直角坐標(biāo)系的方法來求兩條異面直線所成的夾角,【詳解】如圖所示,以正方形ABCD的中心為坐標(biāo)原點,DA方向為x軸,AB方向為y軸,OP為z軸,建立空間直角坐標(biāo)系,,,由幾何關(guān)系可求得,,,,為中點,,,,答案選B.【點睛】解決異面直線問題常用兩種基本方法:異面直線轉(zhuǎn)化成共面直線、空間向量建系法二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè)出點P、Q的坐標(biāo),利用平面向量的坐標(biāo)運算以及兩圓相交的條件求出實數(shù)m的取值范圍.【詳解】設(shè)點,由得,由點在圓上,得,又在圓上,,與有交點,則,解得故實數(shù)m的取值范圍為.故答案為:【點睛】本題考查了向量的坐標(biāo)運算、利用圓與圓的位置關(guān)系求參數(shù)的取值范圍,屬于中檔題.12、乙【解析】由當(dāng)數(shù)據(jù)的相關(guān)系數(shù)的絕對值越趨向于,則相關(guān)性越強可知,因為甲、乙、丙組不同的數(shù)據(jù)的線性相關(guān)系數(shù)分別為,所以乙線性相關(guān)系數(shù)的絕對值越接近,所以乙組數(shù)據(jù)的相關(guān)性越強.13、【解析】
利用向量夾角的坐標(biāo)公式即可計算.【詳解】.【點睛】本題主要考查了向量夾角公式的坐標(biāo)運算,屬于容易題.14、【解析】
令正弦定理化簡已知等式,得到,代入題設(shè),求得的長,利用三角形的面積公式表示出的面積,代入已知等式,再將,即可求解.【詳解】在中,因為,由正弦定理,可得,因為的周長為5,即,所以,又因為,即,所以.【點睛】本題主要考查了正弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時,要抓住題設(shè)條件和利用某個定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.15、【解析】試題分析:利用正弦定理化簡,得,因為,所以,因為為銳角,所以.考點:正弦定理的應(yīng)用.【方法點晴】本題主要考查了正弦定理的應(yīng)用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應(yīng)用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關(guān)鍵,注重考查了分析問題和解答問題的能力,同時注意條件中銳角三角形,屬于中檔試題.16、【解析】
先利用周期公式求出,再利用平移法則得到新的函數(shù)表達(dá)式,依據(jù)函數(shù)為奇函數(shù),求出的表達(dá)式,即可求出的最小值.【詳解】由得,所以,向左平移個單位后,得到,因為其圖像關(guān)于原點對稱,所以函數(shù)為奇函數(shù),有,則,故的最小值為.【點睛】本題主要考查三角函數(shù)的性質(zhì)以及圖像變換,以及型的函數(shù)奇偶性判斷條件.一般地為奇函數(shù),則;為偶函數(shù),則;為奇函數(shù),則;為偶函數(shù),則.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由變形可得,即,于是可得數(shù)列為等比數(shù)列,進而得到通項公式;(2)由(1)得,然后分為奇數(shù)、偶數(shù)兩種情況,將轉(zhuǎn)化為數(shù)列的求和問題解決.【詳解】(1)∵,∴,∵,∴.又,∴數(shù)列是首項為8,公比為3的等比數(shù)列,∴.(2)當(dāng)為正偶數(shù)時,.當(dāng)為正奇數(shù)時,.∴.【點睛】(1)證明數(shù)列為等比數(shù)列時,在運用定義證明的同時還要說明數(shù)列中不存在等于零的項,這一點容易忽視.(2)數(shù)列求和時要根據(jù)數(shù)列通項公式的特點,選擇合適的方法進行求解,求解時要注意確定數(shù)列的項數(shù).18、(1)(2),,,,,【解析】
(1)先計算,將數(shù)據(jù)代入公式得到,,線性回歸方程為(2)利用(1)中所求的線性回歸方程,代入數(shù)據(jù)分別計算得到答案.【詳解】(1)由,可求得,故,,,,代入可得,,所以所求的線性回歸方程為.(2)利用(1)中所求的線性回歸方程可得,當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,.【點睛】本題考查了線性回歸方程的計算,求估計值,意在考查學(xué)生的計算能力和對于回歸方程公式的理解應(yīng)用.19、(1);(2)函數(shù)的最大值為,最小值為.【解析】
用二倍角正弦公式、降冪公式、輔助角公式對函數(shù)的解析式進行化簡,然后利用正弦型函數(shù)的單調(diào)性求解即可.【詳解】.(1)當(dāng)時,函數(shù)遞增,解得,所以函數(shù)的單調(diào)遞增區(qū)間為;(2)因為,所以,因此所以函數(shù)的最大值為,最小值為.【點睛】本題考查了正弦型函數(shù)的單調(diào)性和最值,考查了輔助角公式、二倍角的正弦公式、降冪公式,考查了數(shù)學(xué)運算能力.20、(1)能接到;(2)不能接到【解析】
(1)在中由條件可得,,進一步可得為等邊三角形,然后計算運動到點所需時間即可判斷;(2)建立平面直角坐標(biāo)系,作于,求出直線的方程,然后計算到直線的距離即可判斷.【詳解】(1)如圖所示,在中,,,,,,由題意可知,如果不運動,經(jīng)過,可以接到球,在上取點,使得,,為等邊三角形,,,隊員運動到點要,此時球運動了.所以能接到球.(2)建立如圖所示的平面直角坐標(biāo)系,作于,所以直線的方程為:,經(jīng)過,運動了.點到直線的距離,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023三年級數(shù)學(xué)下冊 一 采訪果蔬會-兩、三位數(shù)除以一位數(shù)(二)第1課時 兩位數(shù)除以一位數(shù)和幾百幾十位數(shù)的口算教學(xué)實錄 青島版六三制
- 2024年度股權(quán)投資合同:風(fēng)險投資機構(gòu)對初創(chuàng)企業(yè)股權(quán)投資協(xié)議3篇
- 2024年中國維生素鈣片市場調(diào)查研究報告
- 2024年中國雜銠提純來料市場調(diào)查研究報告
- 浙江工業(yè)大學(xué)研究生綜合測評表
- 2024年物業(yè)管理前期服務(wù)合同標(biāo)準(zhǔn)模板版B版
- 2024epc綠色建筑項目總承包合同2篇
- 2024至2030年中國喇叭線圈行業(yè)投資前景及策略咨詢研究報告
- 2024年度塑料行業(yè)用粘結(jié)劑技術(shù)轉(zhuǎn)讓合同3篇
- 2024年標(biāo)準(zhǔn)阿里巴巴店鋪托管服務(wù)協(xié)議模板版B版
- 單病種管理理論知識考核試題及答案
- 鉛鋅礦礦山供電系統(tǒng)設(shè)計與節(jié)能改造研究
- DZ∕T 0211-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 重晶石、毒重石、螢石、硼(正式版)
- 啟航計劃培訓(xùn)總結(jié)與反思
- 《電力工程電纜防火封堵施工工藝導(dǎo)則》
- 變電站隱患排查治理總結(jié)報告
- 車輛救援及維修服務(wù)方案
- 三體讀書分享
- 《腎內(nèi)科品管圈》
- 空氣預(yù)熱器市場前景調(diào)研數(shù)據(jù)分析報告
- 2024年南平實業(yè)集團有限公司招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論