2025屆甘肅省酒泉地區(qū)瓜州一中高一數(shù)學第二學期期末復習檢測試題含解析_第1頁
2025屆甘肅省酒泉地區(qū)瓜州一中高一數(shù)學第二學期期末復習檢測試題含解析_第2頁
2025屆甘肅省酒泉地區(qū)瓜州一中高一數(shù)學第二學期期末復習檢測試題含解析_第3頁
2025屆甘肅省酒泉地區(qū)瓜州一中高一數(shù)學第二學期期末復習檢測試題含解析_第4頁
2025屆甘肅省酒泉地區(qū)瓜州一中高一數(shù)學第二學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆甘肅省酒泉地區(qū)瓜州一中高一數(shù)學第二學期期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,已知平行四邊形,,則()A. B.C. D.2.已知直線l的方程是y=2x+3,則l關(guān)于y=-x對稱的直線方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=03.如圖,圓O所在的平面,AB是圓O的直徑,C是圓周上一點(與A、B均不重合),則圖中直角三角形的個數(shù)是()A.1 B.2 C.3 D.44.在平面直角坐標系xoy中,橫、縱坐標均為整數(shù)的點叫做格點,若函數(shù)的圖象恰好經(jīng)過個格點,則稱函數(shù)為階格點函數(shù).下列函數(shù)中為一階格點函數(shù)的是()A. B. C. D.5.已知圓O1:x2+y2=1與圓O2:(x﹣3)2+(x+4)2=16,則圓O1與圓O2的位置關(guān)系為()A.外切 B.內(nèi)切 C.相交 D.相離6.邊長為的正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,則直線與平面所成角的正弦值為()A. B. C. D.7.在中,,,,則的面積為A. B. C. D.8.設是數(shù)列的前項和,時點在拋物線上,且的首項是二次函數(shù)的最小值,則的值為()A.45 B.54 C.36 D.-189.已知向量若與平行,則實數(shù)的值是()A.-2 B.0 C.1 D.210.sin480°等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知一個扇形的周長為4,則扇形面積的最大值為______.12.向量滿足,,則向量的夾角的余弦值為_____.13.在三棱錐中,平面,是邊長為2的正三角形,,則三棱錐的外接球的表面積為__________.14.若,則__________.15.已知圓C:,點M的坐標為(2,4),過點N(4,0)作直線交圓C于A,B兩點,則的最小值為________16.已知數(shù)列滿足,,,記數(shù)列的前項和為,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某企業(yè)生產(chǎn)的某種產(chǎn)品,生產(chǎn)總成本(元)與產(chǎn)量(噸)()函數(shù)關(guān)系為,且函數(shù)是上的連續(xù)函數(shù)(1)求的值;(2)當產(chǎn)量為多少噸時,平均生產(chǎn)成本最低?18.已知三棱錐中,,.若平面分別與棱相交于點且平面.求證:(1);(2).19.駐馬店市政府委托市電視臺進行“創(chuàng)建森林城市”知識問答活動,市電視臺隨機對該市15~65歲的人群抽取了n人,繪制出如圖1所示的頻率分布直方圖,回答問題的統(tǒng)計結(jié)果如表2所示.(1)分別求出a,b,x,y的值;(2)從第二、三、四、五組回答正確的人中用分層抽樣的方法抽取7人,則從第二、三、四、五組每組回答正確的人中應各抽取多少人?(3)在(2)的條件下,電視臺決定在所抽取的7人中隨機選2人頒發(fā)幸運獎,求所抽取的人中第二組至少有1人獲得幸運獎的概率.20.如圖,在四棱錐中,底面為矩形,為等邊三角形,且平面平面.為的中點,為的中點,過點,,的平面交于.(1)求證:平面;(2)若時,求二面角的余弦值.21.在中,已知,,且,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)平面向量的加法運算,即可得到本題答案.【詳解】由題,得.故選:A【點睛】本題主要考查平面向量的加法運算,屬基礎題.2、A【解析】將x=-y,y=-x代入方程y=2x+3中,得所求對稱的直線方程為-x=-2y+3,即x-2y+3=0.3、D【解析】

利用直徑所對的圓周角為直角和線面垂直的判定定理和性質(zhì)定理即可判斷出答案.【詳解】AB是圓O的直徑,則AC⊥BC,由于PA⊥平面ABC,則PA⊥BC,即有BC⊥平面PAC,則有BC⊥PC,則△PBC是直角三角形;由于PA⊥平面ABC,則PA⊥AB,PA⊥AC,則△PAB和△PAC都是直角三角形;再由AC⊥BC,得∠ACB=90°,則△ACB是直角三角形.綜上可知:此三棱錐P?ABC的四個面都是直角三角形.故選D.【點睛】本題考查直線與平面垂直的性質(zhì),考查垂直關(guān)系的推理與證明,屬于基礎題.4、A【解析】

根據(jù)題意得,我們逐個分析四個選項中函數(shù)的格點個數(shù),即可得到答案.【詳解】根據(jù)題意得:函數(shù)y=sinx圖象上只有(0,0)點橫、縱坐標均為整數(shù),故A為一階格點函數(shù);函數(shù)沒有橫、縱坐標均為整數(shù),故B為零階格點函數(shù);函數(shù)y=lgx的圖象有(1,0),(10,1),(100,2),…無數(shù)個點橫、縱坐標均為整數(shù),故C為無窮階格點函數(shù);函數(shù)y=x2的圖象有…(﹣1,0),(0,0),(1,1),…無數(shù)個點橫、縱坐標均為整數(shù),故D為無窮階格點函數(shù).故選A.【點睛】本題考查的知識點是函數(shù)的圖象與圖象變化,其中分析出函數(shù)的格點個數(shù)是解答本題的關(guān)鍵,屬于中檔題.5、A【解析】

先求出兩個圓的圓心和半徑,再根據(jù)它們的圓心距等于半徑之和,可得兩圓相外切.【詳解】圓的圓心為,半徑等于1,圓的圓心為,半徑等于4,它們的圓心距等于,等于半徑之和,兩個圓相外切.故選A.【點睛】判斷兩圓的位置關(guān)系時常用幾何法,即利用兩圓圓心之間的距離與兩圓半徑之間的關(guān)系,一般不采用代數(shù)法.6、D【解析】

在正方形中連接,交于點,根據(jù)正方形的性質(zhì),在折疊圖中平面,得到,從而平面,面平面,則是在平面上的射影,找到直線與平面所所成的角.然后在直角三角中求解.【詳解】如圖所示:在正方形中連接,交于點,在折疊圖,連接,因為,所以平面,所以,又因為,所以平面,又因為平面,所以平面,則是在平面上的射影,所以即為所求.因為故選:D【點睛】本題主要考查了折疊圖問題,還考查了推理論證和空間想象的能力,屬于中檔題.7、C【解析】

利用三角形中的正弦定理求出角B,利用三角形內(nèi)角和求出角C,再利用三角形的面積公式求出三角形的面積,求得結(jié)果.【詳解】因為中,,,,由正弦定理得:,所以,所以,所以,所以,故選C.【點睛】該題所考查的是有關(guān)三角形面積的求解問題,在解題的過程中,需要注意根據(jù)題中所給的條件,應用正弦定理求得,從而求得,之后應用三角形面積公式求得結(jié)果.8、B【解析】

根據(jù)點在拋物線上證得數(shù)列是等差數(shù)列,由二次函數(shù)的最小值求得首項,進而求得的值.【詳解】由于時點在拋物線上,所以,所以數(shù)列是公差為的等差數(shù)列.二次函數(shù),所以.所以.故選:B【點睛】本小題主要考查等差數(shù)列的證明,考查二次函數(shù)的最值的求法,考查等差數(shù)列前項和公式,屬于基礎題.9、D【解析】

因為,所以由于與平行,得,解得.10、D【解析】試題分析:因為,所以選D.考點:誘導公式,特殊角的三角函數(shù)值.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

表示出扇形的面積,利用二次函數(shù)的單調(diào)性即可得出.【詳解】設扇形的半徑為,圓心角為,則弧長,,即,該扇形的面積,當且僅當時取等號.該扇形的面積的最大值為.故答案:.【點睛】本題考查了弧長公式與扇形的面積計算公式、二次函數(shù)的單調(diào)性,考查了計算能力,屬于基礎題.12、【解析】

通過向量的垂直關(guān)系,結(jié)合向量的數(shù)量積求解向量的夾角的余弦值.【詳解】向量,滿足,,可得:,,向量的夾角為,所以.故答案為.【點睛】本題考查向量的數(shù)量積的應用,向量的夾角的余弦函數(shù)值的求法.考查計算能力.屬于基礎題.13、【解析】

設三棱錐的外接球半徑為,利用正弦定理求出的外接圓半徑,再利用公式可計算出外接球半徑,最后利用球體的表面積公式可計算出結(jié)果.【詳解】由正弦定理可得,的外接圓直徑為,,設三棱錐的外接球半徑為,平面,,因此,三棱錐的外接球表面積為,故答案為.【點睛】本題考查多面體的外接球,考查球體表面積的計算,在求解直棱柱后直棱錐的外接球,若底面外接圓半徑為,高為,可利用公式得出外接球的半徑,解題時要熟悉這些結(jié)論的應用.14、;【解析】

易知的周期為,從而化簡求得.【詳解】的周期為,且,又,.故答案為:【點睛】本題考查了正弦型函數(shù)的周期以及利用周期求函數(shù)值,屬于基礎題.15、8【解析】

先將所求化為M到AB中點的距離的最小值問題,再求得AB中點的軌跡為圓,利用點M到圓心的距離減去半徑求得結(jié)果.【詳解】設A、B中點為Q,連接QC,則QC,所以Q的軌跡是以NC為直徑的圓,圓心為P(5,0),半徑為1,又,即求點M到P的距離減去半徑,又,所以,故答案為8【點睛】本題考查了向量的加法運算,考查了求圓中弦中點軌跡的幾何方法,考查了點點距公式,考查了分析解決問題的能力,屬于中檔題.16、7500【解析】

討論的奇偶性,分別化簡遞推公式,根據(jù)等差數(shù)列的定義得的通項公式,進而可求.【詳解】當是奇數(shù)時,=﹣1,由,得,所以,,,…,…是以為首項,以2為公差的等差數(shù)列,當為偶數(shù)時,=1,由,得,所以,,,…,…是首項為,以4為公差的等差數(shù)列,則,所以.故答案為:7500【點睛】本題考查數(shù)列遞推公式的化簡,等差數(shù)列的通項公式,以及等差數(shù)列前n項和公式的應用,也考查了分類討論思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)當產(chǎn)量噸,平均生產(chǎn)成本最低.【解析】

(1)根據(jù)函數(shù)連續(xù)性的定義,可得在分段處兩邊的函數(shù)值相等,可得a的值;(2)求出平均成本的表達式,結(jié)合二次函數(shù)和基本不等式,可得平均生產(chǎn)成本的最小值點.【詳解】(1)設,由函數(shù)是上的連續(xù)函數(shù).即,代入得(2)設平均生產(chǎn)成本為,則當中,,函數(shù)連續(xù)且在單調(diào)遞減,單調(diào)遞增即當,元當,,由,當且僅當取等號,即當,元綜上所述,當產(chǎn)量噸,平均生產(chǎn)成本最低.【點睛】本題考查的知識點是分段函數(shù)的應用,二次函數(shù)的圖象和性質(zhì),基本不等式求最值,屬于中檔題.18、(1)證明見解析;(2)證明見解析.【解析】

(1)利用線面平行的性質(zhì)定理可得線線平行,最后利用平行公理可以證明出;(2)利用線面垂直的判定定理可以證明線面垂直,利用線面垂直的性質(zhì)可以證明線線垂直,利用平行線的性質(zhì),最后證明出.【詳解】證明(1)因為平面,平面平面,平面,所以有,同理可證出,根據(jù)平行公理,可得;(2)因為,,,平面,所以平面,而平面,所以,由(1)可知,所以.【點睛】本題考查了線面平行的性質(zhì)定理,線面垂直的判定定理、以及平行公理的應用.19、(1)0.9,0.36,270,90;(2)2人,3人,1人,1人;(3)1121【解析】

(1)先計算出總?cè)藬?shù)為1000人,再根據(jù)公式依次計算a,b,x,y的值.(2)根據(jù)分層抽樣規(guī)律得到從第二、三、四、五組每組回答正確的人中應分別抽取:2人,3人,1人,1人(3)排出所有可能和滿足條件的情況,得到概率.【詳解】(1)依題和圖表:由0.010×10×n=500.5得:由0.020×10×n=180a得:由0.030×10×n=x0.9得:由0.025×10×n=90b得:由0.015×10×n=y0.6得:故所求a=0.9,b=0.36,x=270,y=90.(2)由以上知:第二、三、四、五組回答正確的人數(shù)分別為:180人,270人,90人,90人用分層抽樣抽取7人,則:從第二組回答正確的人中應該抽取:7×180從第三組回答正確的人中應該抽取:7×270從第四組回答正確的人中應該抽取:7×90從第五組回答正確的人中應該抽取:7×90故從第二、三、四、五組每組回答正確的人中應分別抽取:2人,3人,1人,1人;(3)設從第二組回答正確的人抽取的2人為:2a,2b,從第三組回答正確的人抽取的3人為:3a,3b,3c從第四組回答正確的人抽取的1人為:4a從第五組回答正確的人抽取的1人為:5a隨機抽取2人,所有可能的結(jié)果有:(2a,2b),(2a,3a),(2a,3b),(2a,3c),(2a,4a),(2a,5a),(2b,3a),(2b,3b),(2b,3c),(2b,4a),(2b,5a),(3a,3b),(3a,3c),(3a,4a),(3a,5a),(3b,3c),(3b,4a),(3b,5a),(3c,4a),(3c,5a),(4a,5a),共21個基本事件,其中第二組至少有1人被抽中的有:(2a,2b),(2a,3a),(2a,3b),(2a,3c),(2a,4a),(2a,5a),(2b,3a),(2b,3b),(2b,3c),(2b,4a),(2b,5a)共這11個基本事件.故抽取的人中第二組至少有1人獲得幸運獎的概率為:1121【點睛】本題考查了頻率直方圖,分層抽樣,概率的計算,意在考查學生的應用能力和計算能力.20、(1)證明見解析;(2)【解析】

(1)首先證明平面,由平面平面,可說明,由此可得四邊形為平行四邊形,即可證明平面;(2)延長交于點,過點作交直線于點,則即為二面角的平面角,求出的余弦值即可得到答案.【詳解】(1)∵為矩形∴,平面,平面∴平面.又因為平面平面,∴.為中點,為中點,所以平行且等于,即四邊形為平行四邊形所以,平面,平面所以平面(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論