版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省贛州市石城縣石城中學(xué)2025屆高一下數(shù)學(xué)期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.袋中有個大小相同的小球,其中個白球,個紅球,個黑球,現(xiàn)在從中任意取一個,則取出的球恰好是紅色或者黑色小球的概率為()A. B. C. D.2.對具有線性相關(guān)關(guān)系的變量,有觀測數(shù)據(jù),已知它們之間的線性回歸方程是,若,則()A. B. C. D.3.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.13 B.15 C.40 D.464.函數(shù)圖象的一個對稱中心和一條對稱軸可以是()A., B.,C., D.,5.下列條件:①;②;③;其中一定能推出成立的有()A.0個 B.3個 C.2個 D.1個6.已知為第Ⅱ象限角,則的值為()A. B. C. D.7.式子的值為()A. B.0 C.1 D.8.在三棱柱中,底面,是正三角形,若,則該三棱柱外接球的表面積為()A. B. C. D.9.利用斜二測畫法得到的:①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③相等的角在直觀圖中仍然相等;④正方形的直觀圖是正方形.以上結(jié)論正確的是()A.①② B.① C.③④ D.①②③④10.若,則的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列滿足:,,則使成立的的最大值為_______12.設(shè)數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{}的前10項的和為__.13.已知圓柱的底面圓的半徑為2,高為3,則該圓柱的側(cè)面積為________.14.一組樣本數(shù)據(jù)8,10,18,12的方差為___________.15.從1,2,3,4,5中任意取出兩個不同的數(shù),其和為5的概率為________.16.如圖,在△中,三個內(nèi)角、、所對的邊分別為、、,若,,為△外一點,,,則平面四邊形面積的最大值為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.為了了解當下高二男生的身高狀況,某地區(qū)對高二年級男生的身高(單位:)進行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.(1)若身高在以內(nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?(2)從所抽取的樣本中身高在和的男生中隨機再選出2人調(diào)查其平時體育鍛煉習慣對身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?18.在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.(1)求角A的大??;(2)若△ABC的面積S=5,b=5,求sinBsinC的值.19.在中,內(nèi)角所對的邊分別是.已知,,且.(Ⅰ)求角的大??;(Ⅱ)若,求面積的最大值.20.已知函數(shù).(1)求函數(shù)的最小正周期;(2)若函數(shù)在的最大值為2,求實數(shù)的值.21.已知數(shù)列前項和為,滿足,(1)證明:數(shù)列是等差數(shù)列,并求;(2)設(shè),求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
利用古典概型的概率公式可計算出所求事件的概率.【詳解】從袋中個球中任取一個球,取出的球恰好是一個紅色或黑色小球的基本事件數(shù)為,因此,取出的球恰好是紅色或者黑色小球的概率為,故選D.【點睛】本題考查古典概型概率的計算,解題時要確定出全部基本事件數(shù)和所求事件所包含的基本事件數(shù),并利用古典概型的概率公式進行計算,考查計算能力,屬于基礎(chǔ)題.2、A【解析】
先求出,再由線性回歸直線通過樣本中心點即可求出.【詳解】由題意,,因為線性回歸直線通過樣本中心點,將代入可得,所以.故選:A.【點睛】本題主要考查線性回歸直線通過樣本中心點這一知識點的應(yīng)用,屬常規(guī)考題.3、A【解析】
模擬程序運行即可.【詳解】程序運行循環(huán)時,變量值為,不滿足;,不滿足;,滿足,結(jié)束循環(huán),輸出.故選A.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題時可模擬程序運行,觀察變量值的變化,判斷是否符合循環(huán)條件即可.4、B【解析】
直接利用余弦型函數(shù)的性質(zhì)求出函數(shù)的對稱軸和對稱中心,即可得到答案.【詳解】由題意,函數(shù)的性質(zhì),令,解得,當時,,即函數(shù)的一條對稱軸的方程為,令,解得,當時,,即函數(shù)的一個對稱中心為,故選B.【點睛】本題主要考查了余弦型函數(shù)的性質(zhì)對稱軸和對稱中心的應(yīng)用,著重考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.5、D【解析】
利用特殊值證得①②不一定能推出,利用平方差公式證得③能推出.【詳解】對于①,若,而,故①不一定能推出;對于②,若,而,故②不一定能推出;對于③,由于,所以,故,也即.故③一定能推出.故選:D.【點睛】本小題主要考查不等式的性質(zhì),考查實數(shù)大小比較,屬于基礎(chǔ)題.6、B【解析】
首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【詳解】因為,所以或,又為第Ⅱ象限角,故,.因為為第Ⅱ象限角即,所以,,即為第Ⅰ,Ⅲ象限角.由于,解得,故選B.【點睛】本題主要考查二倍角公式的應(yīng)用以及象限角的集合應(yīng)用.7、D【解析】
利用兩角和的正弦公式可得原式為cos(),再由特殊角的三角函數(shù)值可得結(jié)果.【詳解】cos()=coscos,故選D.【點睛】本題考查兩角和的余弦公式,熟練掌握兩角和與差的余弦公式以及特殊角的三角函數(shù)值是解題的關(guān)鍵,屬于基礎(chǔ)題.8、C【解析】
設(shè)球心為,的中心為,求出與,利用勾股定理求出外接球的半徑,代入球的表面積公式即可.【詳解】設(shè)球心為,的中心為,則,,球的半徑,所以球的表面積為.故選:C【點睛】本題考查多面體外接球問題,球的表面積公式,屬于中檔題.9、A【解析】
由直觀圖的畫法和相關(guān)性質(zhì),逐一進行判斷即可.【詳解】斜二側(cè)畫法會使直觀圖中的角度不同,也會使得沿垂直于水平線方向的長度與原圖不同,而多邊形的邊數(shù)不會改變,同時平行直線之間的位置關(guān)系依舊保持平行,故:①②正確,③和④不對,因為角度會發(fā)生改變.故選:A.【點睛】本題考查斜二側(cè)畫法的相關(guān)性質(zhì),注意角度是發(fā)生改變的,這是易錯點.10、D【解析】
根據(jù)對數(shù)運算可求得且,,利用基本不等式可求得最小值.【詳解】由得:且,(當且僅當時取等號)本題正確選項:【點睛】本題考查利用基本不等式求解和的最小值的問題,關(guān)鍵是能夠利用對數(shù)運算得到積的定值,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】
從得到關(guān)于的通項公式后可得的通項公式,解不等式后可得使成立的的最大值.【詳解】易知為等差數(shù)列,首項為,公差為1,∴,∴,令,∴,∴.故答案為:4【點睛】本題考查等差數(shù)列的通項的求法及數(shù)列不等式的解,屬于容易題.12、【解析】試題分析:∵數(shù)列滿足,且,∴當時,.當時,上式也成立,∴.∴.∴數(shù)列的前項的和.∴數(shù)列的前項的和為.故答案為.考點:(1)數(shù)列遞推式;(2)數(shù)列求和.13、【解析】
圓柱的側(cè)面打開是一個矩形,長為底面的周長,寬為圓柱的高,即,帶入數(shù)據(jù)即可.【詳解】因為圓柱的底面圓的半徑為2,所以圓柱的底面圓的周長為,則該圓柱的側(cè)面積為.【點睛】此題考察圓柱側(cè)面積公式,屬于基礎(chǔ)題目.14、14【解析】
直接利用平均數(shù)和方差的公式,即可得到本題答案.【詳解】平均數(shù),方差.故答案為:14【點睛】本題主要考查平均數(shù)公式與方差公式的應(yīng)用.15、0.2【解析】從1,2,3,4,5中任意取兩個不同的數(shù)共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)10種.其中和為5的有(1,4),(2,3)2種.由古典概型概率公式知所求概率為=.16、【解析】
根據(jù)題意和正弦定理,化簡得,進而得到,在中,由余弦定理,求得,進而得到,,得出四邊形的面積為,再結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】由題意,在中,因為,所以,可得,即,所以,所以,又因為,可得,所以,即,因為,所以,在中,,由余弦定理,可得,又因為,所以為等腰直角三角形,所以,又因為,所以四邊形的面積為,當時,四邊形的面積有最大值,最大值為.故答案為:.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時,要抓住題設(shè)條件和利用某個定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)12600;(2).【解析】
(1)由頻率分布直方圖知,身高正常的頻率,于是可得答案;(2)先計算出樣本容量,再找出樣本中身高在中的人數(shù),從而利用古典概型公式得到答案.【詳解】(1)由頻率分布直方圖知,身高正常的頻率為0.7,所以估計總體,即該地區(qū)所有高二年級男生中身高正常的頻率為0.7,所以該地區(qū)高二男生中身高正常的大約有人.(2)由所抽取樣本中身高在的頻率為,可知身高在的頻率為,所以樣本容量為,則樣本中身高在中的有3人,記為,身高在中的有2人,記為,從這5人中再選2人,共有,,,,,,,,,10種不同的選法,而且每種選法都是互斥且等可能的,所以,所選2人中至少有一人身高大于185的概率.【點睛】本題主要考查頻率分布直方圖,古典概型的相關(guān)計算,意在考查學(xué)生的轉(zhuǎn)化能力,計算能力和分析能力,難度中等.18、(1)(2)【解析】試題分析:(1)根據(jù)二倍角公式,三角形內(nèi)角和,所以,整理為關(guān)于的二次方程,解得角的大??;(2)根據(jù)三角形的面積公式和上一問角,代入后解得邊,這樣就知道,然后根據(jù)余弦定理再求,最后根據(jù)證得定理分別求得和.試題解析:(1)由cos2A-3cos(B+C)=1,得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,解得cosA=或cosA=-2(舍去).因為0<A<π,所以A=.(2)由S=bcsinA=bc×=bc=5,得bc=20,又b=5,知c=4.由余弦定理得a2=b2+c2-2bccosA=25+16-20=21,故a=.從而由正弦定理得sinBsinC=sinA×sinA=sin2A=×=.考點:1.二倍角公式;2.正余弦定理;3.三角形面積公式.【方法點睛】本題涉及到解三角形問題,所以有關(guān)三角問題的公式都有涉及,當出現(xiàn)時,就要考慮一個條件,,,這樣就做到了有效的消元,涉及三角形的面積問題,就要考慮公式,靈活使用其中的一個.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)先利用向量垂直的坐標表示,得到,再利用正弦定理以及兩角和的正弦公式將,化為,進而得到,由此能求出.(Ⅱ)將兩邊平方,推導(dǎo)出,當且僅當,時取等號,由此求出面積的最大值.【詳解】解析:(Ⅰ)由得,則得,即由于,得,又A為內(nèi)角,因此.(Ⅱ)將兩邊平方,即所以,當且僅當,時取等號.此時,其最大值為.【點睛】本題主要考查數(shù)量積的坐標表示及運算、兩角和的正弦公式應(yīng)用、三角形面積公式的應(yīng)用以及利用基本不等式求最值.20、(1);(2)或【解析】
(1)根據(jù)二倍角公式進行整理化簡可得,從而可得最小正周期;(2)將通過換元的方式變?yōu)?,;討論對稱軸的具體位置,分別求解最大值,從而建立方程求得的值.【詳解】(1)最小正周期(2)令,則由得①當,即時當時,由,解得(舍去)②當,即時當時,由得,解得或(舍去)③當,即時當時,,由,解得綜上,或【點睛】本題考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年玉林貨運從業(yè)資格仿真考題
- 2024商標轉(zhuǎn)讓及品牌升級合同:攜手共進品牌升級之旅3篇
- 2024商混合同范本:商混混凝土生產(chǎn)與質(zhì)量控制合作協(xié)議3篇
- 2025廚房設(shè)備銷售合同版
- 商業(yè)綜合體電力施工合同范本
- 城市公園旁咖啡館租賃合同
- 城市綠化帶擴建植樹合同
- 出入境文件公證辦理規(guī)范
- 智能家居維修員招聘合同模板
- 汽車研發(fā)中心施工協(xié)議
- 【道法廣角】成語故事會:立木為信
- 《我們?nèi)タ春!烽喿x答案
- 智慧酒店無人酒店綜合服務(wù)解決方案
- 考研英語一新題型歷年真題(2005-2012)
- 健身房會籍顧問基礎(chǔ)培訓(xùn)資料
- 9脊柱與四肢、神經(jīng)系統(tǒng)檢查總結(jié)
- 秀場內(nèi)外-走進服裝表演藝術(shù)智慧樹知到答案章節(jié)測試2023年武漢紡織大學(xué)
- 【高分復(fù)習筆記】王建《現(xiàn)代自然地理學(xué)》(第2版)筆記和課后習題詳解
- TSGD0012023年壓力管道安全技術(shù)監(jiān)察規(guī)程-工業(yè)管道(高清晰版)
- SMM英國建筑工程標準計量規(guī)則中文 全套
- 2023-2024學(xué)年浙江省富陽市小學(xué)數(shù)學(xué)四年級上冊期末通關(guān)題
評論
0/150
提交評論