




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濟寧汶上縣聯(lián)考2023-2024學年中考數(shù)學最后一模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.將不等式組的解集在數(shù)軸上表示,下列表示中正確的是()A. B. C. D.2.如圖,直線y=kx+b與x軸交于點(﹣4,0),則y>0時,x的取值范圍是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<03.滴滴快車是一種便捷的出行工具,計價規(guī)則如下表:計費項目
里程費
時長費
遠途費
單價
1.8元/公里
0.3元/分鐘
0.8元/公里
注:車費由里程費、時長費、遠途費三部分構成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(含7公里)不收遠途費,超過7公里的,超出部分每公里收0.8元.
小王與小張各自乘坐滴滴快車,行車里程分別為6公里與8.5公里,如果下車時兩人所付車費相同,那么這兩輛滴滴快車的行車時間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘4.-3的倒數(shù)是()A.3 B.13 C.-15.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠16.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關系是()A.M>N B.M=N C.M<N D.不能確定7.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:28.估算的值在(
)A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間9.如圖,在4×4正方形網(wǎng)格中,黑色部分的圖形構成一個軸對稱圖形,現(xiàn)在任意選取一個白色的小正方形并涂黑,使黑色部分的圖形仍然構成一個軸對稱圖形的概率是()A. B. C. D.10.如圖,AB是⊙O的直徑,AB=8,弦CD垂直平分OB,E是弧AD上的動點,AF⊥CE于點F,點E在弧AD上從A運動到D的過程中,線段CF掃過的面積為()A.4π+3 B.4π+ C.π+ D.π+3二、填空題(共7小題,每小題3分,滿分21分)11.為了了解貫徹執(zhí)行國家提倡的“陽光體育運動”的實施情況,將某班50名同學一周的體育鍛煉情況繪制成了如圖所示的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的數(shù)據(jù),該班50名同學一周參加體育鍛煉時間的中位數(shù)與眾數(shù)之和為_____.12.比較大小:_____1(填“<”或“>”或“=”).13.數(shù)學的美無處不在.數(shù)學家們研究發(fā)現(xiàn),彈撥琴弦發(fā)出聲音的音調高低,取決于弦的長度,繃得一樣緊的幾根弦,如果長度的比能夠表示成整數(shù)的比,發(fā)出的聲音就比較和諧.例如,三根弦長度之比是15:12:10,把它們繃得一樣緊,用同樣的力彈撥,它們將分別發(fā)出很調和的樂聲do、mi、so,研究15、12、10這三個數(shù)的倒數(shù)發(fā)現(xiàn):.我們稱15、12、10這三個數(shù)為一組調和數(shù).現(xiàn)有一組調和數(shù):x,5,3(x>5),則x的值是.14.如圖,△ABC≌△ADE,∠EAC=40°,則∠B=_______°.15.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設運動時間為ts,當t=__________時,△CPQ與△CBA相似.16.七巧板是我國祖先創(chuàng)造的一種智力玩具,它來源于勾股法,如圖①整幅七巧板是由正方形ABCD分割成七小塊(其中:五塊等腰直角三角形、一塊正方形和一塊平行四邊形)組成,如圖②是由七巧板拼成的一個梯形,若正方形ABCD的邊長為12cm,則梯形MNGH的周長是cm(結果保留根號).17.如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉90°后得Rt△FOE,將線段EF繞點E逆時針旋轉90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標系中,函數(shù)()的圖象經過點(4,1),直線與圖象交于點,與軸交于點.求的值;橫、縱坐標都是整數(shù)的點叫做整點.記圖象在點,之間的部分與線段,,圍成的區(qū)域(不含邊界)為.①當時,直接寫出區(qū)域內的整點個數(shù);②若區(qū)域內恰有4個整點,結合函數(shù)圖象,求的取值范圍.19.(5分)如圖,將連續(xù)的奇數(shù)1,3,5,7…按如圖中的方式排成一個數(shù),用一個十字框框住5個數(shù),這樣框出的任意5個數(shù)中,四個分支上的數(shù)分別用a,b,c,d表示,如圖所示.(1)計算:若十字框的中間數(shù)為17,則a+b+c+d=______.(2)發(fā)現(xiàn):移動十字框,比較a+b+c+d與中間的數(shù).猜想:十字框中a、b、c、d的和是中間的數(shù)的______;(3)驗證:設中間的數(shù)為x,寫出a、b、c、d的和,驗證猜想的正確性;(4)應用:設M=a+b+c+d+x,判斷M的值能否等于2020,請說明理由.20.(8分)對于平面直角坐標系中的點,將它的縱坐標與橫坐標的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標的取值范圍;(3),是以為半徑的上任意一點,當時,畫出滿足條件的最大圓,并直接寫出相應的半徑的值.(要求畫圖位置準確,但不必尺規(guī)作圖)21.(10分)先化簡代數(shù)式,再從-2,2,0三個數(shù)中選一個恰當?shù)臄?shù)作為a的值代入求值.22.(10分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當?shù)谝淮闻c外切時,求平移的時間.23.(12分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).24.(14分)如圖,在△ABC中,AB=AC=4,∠A=36°.在AC邊上確定點D,使得△ABD與△BCD都是等腰三角形,并求BC的長(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數(shù)軸上即可.解:不等式可化為:,即.
∴在數(shù)軸上可表示為.故選B.“點睛”不等式組的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.2、A【解析】試題分析:充分利用圖形,直接從圖上得出x的取值范圍.由圖可知,當y<1時,x<-4,故選C.考點:本題考查的是一次函數(shù)的圖象點評:解答本題的關鍵是掌握在x軸下方的部分y<1,在x軸上方的部分y>1.3、D【解析】
設小王的行車時間為x分鐘,小張的行車時間為y分鐘,根據(jù)計價規(guī)則計算出小王的車費和小張的車費,建立方程求解.【詳解】設小王的行車時間為x分鐘,小張的行車時間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.【點睛】本題考查列方程解應用題,讀懂表格中的計價規(guī)則是解題的關鍵.4、C【解析】
由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C5、D【解析】試題分析:∵代數(shù)式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.6、A【解析】
若比較M,N的大小關系,只需計算M-N的值即可.【詳解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【點睛】本題的主要考查了比較代數(shù)式的大小,可以讓兩者相減再分析情況.7、B【解析】
∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B8、C【解析】
由可知56,即可解出.【詳解】∵∴56,故選C.【點睛】此題主要考查了無理數(shù)的估算,掌握無理數(shù)的估算是解題的關鍵.9、B【解析】解:∵根據(jù)軸對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合,白色的小正方形有13個,而能構成一個軸對稱圖形的有4個情況,∴使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是:.故選B.10、A【解析】
連AC,OC,BC.線段CF掃過的面積=扇形MAH的面積+△MCH的面積,從而證明即可解決問題.【詳解】如下圖,連AC,OC,BC,設CD交AB于H,∵CD垂直平分線段OB,∴CO=CB,∵OC=OB,∴OC=OB=BC,∴,∵AB是直徑,∴,∴,∵,∴點F在以AC為直徑的⊙M上運動,當E從A運動到D時,點F從A運動到H,連接MH,∵MA=MH,∴∴,∵,∴CF掃過的面積為,故選:A.【點睛】本題主要考查了陰影部分面積的求法,熟練掌握扇形的面積公式及三角形的面積求法是解決本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、17【解析】∵8是出現(xiàn)次數(shù)最多的,∴眾數(shù)是8,∵這組數(shù)據(jù)從小到大的順序排列,處于中間位置的兩個數(shù)都是9,∴中位數(shù)是9,所以中位數(shù)與眾數(shù)之和為8+9=17.故答案為17小時.12、<【解析】
∵≈0.62,0.62<1,∴<1;故答案為<.13、1.【解析】依據(jù)調和數(shù)的意義,有-=-,解得x=1.14、1°【解析】
根據(jù)全等三角形的對應邊相等、對應角相等得到∠BAC=∠DAE,AB=AD,根據(jù)等腰三角形的性質和三角形內角和定理計算即可.【詳解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案為1.【點睛】本題考查的是全等三角形的性質和三角形內角和定理,掌握全等三角形的對應邊相等、對應角相等是解題的關鍵.15、4.8或【解析】
根據(jù)題意可分兩種情況,①當CP和CB是對應邊時,△CPQ∽△CBA與②CP和CA是對應邊時,△CPQ∽△CAB,根據(jù)相似三角形的性質分別求出時間t即可.【詳解】①CP和CB是對應邊時,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對應邊時,△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當t=4.8或時,△CPQ與△CBA相似.【點睛】此題主要考查相似三角形的性質,解題的關鍵是分情況討論.16、24+24【解析】
仔細觀察梯形從而發(fā)現(xiàn)其各邊與原正方形各邊之間的關系,則不難求得梯形的周長.【詳解】解:觀察圖形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周長=HG+HM+MN+NG=2HM+4HG=24+24.故答案為24+24.【點睛】此題主要考查學生對等腰梯形的性質及正方形的性質的運用及觀察分析圖形的能力.17、8﹣π【解析】分析:如下圖,過點D作DH⊥AE于點H,由此可得∠DHE=∠AOB=90°,由旋轉的性質易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長,即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.詳解:如下圖,過點D作DH⊥AE于點H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋轉的性質結合已知條件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案為:.點睛:作出如圖所示的輔助線,利用旋轉的性質證得△DEH≌△BAO,由此得到DH=BO=2,從而將陰影部分的面積轉化為:S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF來計算是解答本題的關鍵.三、解答題(共7小題,滿分69分)18、(1)4;(2)①3個.(1,0),(2,0),(3,0).②或.【解析】分析:(1)根據(jù)點(4,1)在()的圖象上,即可求出的值;(2)①當時,根據(jù)整點的概念,直接寫出區(qū)域內的整點個數(shù)即可.②分.當直線過(4,0)時,.當直線過(5,0)時,.當直線過(1,2)時,.當直線過(1,3)時四種情況進行討論即可.詳解:(1)解:∵點(4,1)在()的圖象上.∴,∴.(2)①3個.(1,0),(2,0),(3,0).②.當直線過(4,0)時:,解得.當直線過(5,0)時:,解得.當直線過(1,2)時:,解得.當直線過(1,3)時:,解得∴綜上所述:或.點睛:屬于反比例函數(shù)和一次函數(shù)的綜合題,考查待定系數(shù)法求反比例函數(shù)解析式,一次函數(shù)的圖象與性質,掌握整點的概念是解題的關鍵,注意分類討論思想在解題中的應用.19、(1)68
;(2)4倍;(3)4x,猜想正確,見解析;(4)M的值不能等于1,見解析.【解析】
(1)直接相加即得到答案;(2)根據(jù)(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合數(shù)表里數(shù)的特征,故不能等于1.【詳解】(1)5+15+19+29=68,故答案為68;(2)根據(jù)(1)猜想a+b+c+d=4x,答案為:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正確;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整個數(shù)表所有的數(shù)都為奇數(shù),故不成立,∴M的值不能等于1.【點睛】本題考查了一元一次方程的應用.當解得方程的解后,要觀察是否滿足題目和實際要求再進行取舍.20、(1)①﹣3;②;(2);(3)【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點與原點連線與軸夾角越大,可得直線與相切時理想值最大,與x中相切時,理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時,LQ取最小值和最大值,求出點橫坐標即可;(3)根據(jù)題意將點轉化為直線,點理想值最大時點在上,分析圖形即可.【詳解】(1)①∵點在直線上,∴,∴點的“理想值”=-3,故答案為:﹣3.②當點在與軸切點時,點的“理想值”最小為0.當點縱坐標與橫坐標比值最大時,的“理想值”最大,此時直線與切于點,設點Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點的“理想值”為,故答案為:.(2)設直線與軸、軸的交點分別為點,點,當x=0時,y=3,當y=0時,x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當與軸相切時,LQ=0,相應的圓心滿足題意,其橫坐標取到最大值.作軸于點,∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當與直線相切時,LQ=,相應的圓心滿足題意,其橫坐標取到最小值.作軸于點,則.設直線與直線的交點為.∵直線中,k=,∴,∴,點F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(2,m),∴M點在直線x=2上,∵,∴LQ取最大值時,=,∴作直線y=x,與x=2交于點N,當M與ON和x軸同時相切時,半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【點睛】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線的性質,解答時要注意做好數(shù)形結合,根據(jù)圖形進行分類討論.21、,2【解析】試題分析:首先將括號里面的進行通分,然后將除法改成乘法進行分式的化簡,選擇a的值時,不能使原分式沒有意義,即a不能取2和-2.試題解析:原式=·=當a=0時,原式==2.考點:分式的化簡求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 法律服務行業(yè)法律顧問服務協(xié)議
- 產業(yè)園物業(yè)服務合同
- 古詩文登高解讀與教學方案設計
- 個人權益保護網(wǎng)絡平臺使用協(xié)議
- 企業(yè)級網(wǎng)絡安全預防預案
- 裝修工程擔保合同
- 《宋代書法欣賞:大學書法藝術課程教案》
- 在線教育行業(yè)分析模擬試題集
- 股權擔保協(xié)議書規(guī)范
- 企業(yè)社會責任年度演講致辭草稿
- 畜禽廢棄物資源化利用講稿課件
- 土地糾紛調解簡單協(xié)議書
- 服裝倉庫管理制度及流程
- 架子工安全教育培訓試題(附答案)
- 《高血壓5項化驗》課件
- 一中師德考核評估制度
- 肋骨骨折護理個案查房
- 分布式網(wǎng)絡處理方案
- CNAS-CL02-A001:2023 醫(yī)學實驗室質量和能力認可準則的應用要求
- 血管外科護理課件
- 鐵路機車檢修坑施工方案
評論
0/150
提交評論