版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆安徽省馬鞍山含山高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)的圖像關(guān)于直線對(duì)稱,則的最小值為()A. B. C. D.12.中,若,則的形狀是()A.等腰三角形 B.等邊三角形C.銳角三角形 D.直角三角形3.已知,若,則的值是().A.-1 B.1 C.2 D.-24.已知函數(shù)在區(qū)間上恒成立,則實(shí)數(shù)的最小值是()A. B. C. D.5.直線:與圓的位置關(guān)系為()A.相離 B.相切 C.相交 D.無法確定6.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂面內(nèi),若飛機(jī)的高度為海拔18km,速度為1000m/h,飛行員先看到山頂?shù)母┙菫?,?jīng)過1min后又看到山頂?shù)母┙菫?,則山頂?shù)暮0胃叨葹椋ň_到0.1km,參考數(shù)據(jù):)A.11.4km B.6.6km C.6.5km D.5.6km7.某小組有3名男生和2名女生,從中任選2名同學(xué)去參加演講比賽,事件“至少1名女生”與事件“全是男生”()A.是互斥事件,不是對(duì)立事件B.是對(duì)立事件,不是互斥事件C.既是互斥事件,也是對(duì)立事件D.既不是互斥事件也不是對(duì)立事件8.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B.C. D.9.若且,則下列不等式成立的是()A. B. C. D.10.直線經(jīng)過點(diǎn)和,則直線的傾斜角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)為正偶數(shù),,則____________.12.已知三棱錐外接球的表面積為,面,則該三棱錐體積的最大值為____。13.如圖,在正方體中,有以下結(jié)論:①平面;②平面;③;④異面直線與所成的角為.則其中正確結(jié)論的序號(hào)是____(寫出所有正確結(jié)論的序號(hào)).14.已知,是夾角為的兩個(gè)單位向量,向量,,若,則實(shí)數(shù)的值為________.15.若函數(shù)的圖象與直線恰有兩個(gè)不同交點(diǎn),則的取值范圍是________.16.若點(diǎn)在冪函數(shù)的圖像上,則函數(shù)的反函數(shù)=________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面積的最大值.18.已知數(shù)列中,..(1)寫出、、;(2)猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明.19.某校從高一年級(jí)學(xué)生中隨機(jī)抽取60名學(xué)生,將期中考試的物理成績(均為整數(shù))分成六段:,,,…,后得到如圖頻率分布直方圖.(1)根據(jù)頻率分布直方圖,估計(jì)眾數(shù)和中位數(shù);(2)用分層抽樣的方法從的學(xué)生中抽取一個(gè)容量為5的樣本,從這五人中任選兩人參加補(bǔ)考,求這兩人的分?jǐn)?shù)至少一人落在的概率.20.在中,角,,的對(duì)邊分別為,,,且.(1)求角的大小;(2)若,的面積為,求邊的長.21.設(shè)的內(nèi)角為所對(duì)的邊分別為,且.(1)求角的大小;(2)若,求的周長的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
的對(duì)稱軸為,化簡(jiǎn)得到得到答案.【詳解】對(duì)稱軸為:當(dāng)時(shí),有最小值為故答案選C【點(diǎn)睛】本題考查了三角函數(shù)的對(duì)稱軸,將對(duì)稱軸表示出來是解題的關(guān)鍵,意在考查學(xué)生對(duì)于三角函數(shù)性質(zhì)的靈活運(yùn)用.2、D【解析】
根據(jù)正弦定理,得到,進(jìn)而得到,再由兩角和的正弦公式,即可得出結(jié)果.【詳解】因?yàn)椋?,所以,即,所以,又因此,所以,即三角形為直角三角?故選D【點(diǎn)睛】本題主要考查三角形形狀的判斷,熟記正弦定理即可,屬于??碱}型.3、C【解析】
先求出的坐標(biāo),再利用向量平行的坐標(biāo)表示求出c的值.【詳解】由題得,因?yàn)椋?(c-2)-2×0=0,所以c=2.故選C【點(diǎn)睛】本題主要考查向量的坐標(biāo)計(jì)算和向量共線的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.4、D【解析】
直接利用三角函數(shù)關(guān)系式的恒等變換,把函數(shù)的關(guān)系式變形為正弦型函數(shù),進(jìn)一步利用恒成立問題的應(yīng)用求出結(jié)果.【詳解】函數(shù),由因?yàn)?,所以,即,?dāng)時(shí),函數(shù)的最大值為,由于在區(qū)間上恒成立,故,實(shí)數(shù)的最小值是.故選:D【點(diǎn)睛】本題考查了兩角和的余弦公式、輔助角公式以及三角函數(shù)的最值,需熟記公式與三角函數(shù)的性質(zhì),同時(shí)考查了不等式恒成立問題,屬于基出題5、C【解析】
求出圓的圓心坐標(biāo)和半徑,然后運(yùn)用點(diǎn)到直線距離求出的值和半徑進(jìn)行比較,判定出直線與圓的關(guān)系.【詳解】因?yàn)閳A,所以圓心,半徑,所以圓心到直線的距離為,則直線與圓相交.故選【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,運(yùn)用點(diǎn)到直線的距離公式求出和半徑比較,得到直線與圓的位置關(guān)系.6、C【解析】
根據(jù)題意求得和的長,然后利用正弦定理求得BC,最后利用求得問題答案.【詳解】在中,根據(jù)正弦定理,所以:山頂?shù)暮0胃叨葹?8-11.5=6.5km.故選:C【點(diǎn)睛】本題考查了正弦定理在實(shí)際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)應(yīng)用,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7、C【解析】至少1名女生的對(duì)立事件就是全是男生.因此事件“至少1名女生”與事件“全是男生”既是互斥事件,也是對(duì)立事件8、C【解析】
先通過三視圖找到幾何體原圖,再求幾何體的體積得解.【詳解】由題得該幾何體是一個(gè)邊長為4的正方體挖去一個(gè)圓錐(圓錐底面在正方體上表面上,圓錐頂部朝下),所以幾何體體積為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體原圖,考查組合體體積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.9、D【解析】
利用作差法對(duì)每一個(gè)選項(xiàng)逐一判斷分析.【詳解】選項(xiàng)A,所以a≥b,所以該選項(xiàng)錯(cuò)誤;選項(xiàng)B,,符合不能確定,所以該選項(xiàng)錯(cuò)誤;選項(xiàng)C,,符合不能確定,所以該選項(xiàng)錯(cuò)誤;選項(xiàng)D,,所以,所以該選項(xiàng)正確.故選D【點(diǎn)睛】本題主要考查實(shí)數(shù)大小的比較,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.10、D【解析】
算出直線的斜率后可得其傾斜角.【詳解】設(shè)直線的斜率為,且傾斜角為,則,根據(jù),而,故,故選D.【點(diǎn)睛】本題考查直線傾斜角的計(jì)算,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
得出的表達(dá)式,然后可計(jì)算出的表達(dá)式.【詳解】,,因此,.故答案為:.【點(diǎn)睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,考查項(xiàng)的變化,考查計(jì)算能力,屬于基礎(chǔ)題.12、【解析】
根據(jù)球的表面積計(jì)算出球的半徑.利用勾股定理計(jì)算出三角形外接圓的半徑,根據(jù)正弦定理求得的長,再根據(jù)圓內(nèi)三角形面積的最大值求得三角形面積的最大值,由此求得三棱錐體積的最大值.【詳解】畫出圖像如下圖所示,其中是外接球的球心,是底面三角形的外心,.設(shè)球的半徑為,三角形外接圓的半徑為,則,故在中,.在三角形中,由正弦定理得.故三角形為等邊三角形,其高為.由于為定值,而三角形的高等于時(shí),三角形的面積取得最大值,由于為定值,故三棱錐的體積最大值為.【點(diǎn)睛】本小題主要考查外接球有關(guān)計(jì)算,考查三棱錐體積的最大值的計(jì)算,屬于中檔題.13、①③【解析】
①:利用線面平行的判定定理可以直接判斷是正確的結(jié)論;②:舉反例可以判斷出該結(jié)論是錯(cuò)誤的;③:可以利用線面垂直的判定定理,得到線面垂直,再利用線面垂直的性質(zhì)定理可以判斷是正確的結(jié)論;④:可以通過,可以判斷出異面直線與所成的角為,即本結(jié)論是錯(cuò)誤的,最后選出正確的結(jié)論序號(hào).【詳解】①:平面,平面平面,故本結(jié)論是正確的;②:在正方形中,,顯然不垂直,而,所以不互相垂直,要是平面,則必有互相垂直,顯然是不可能的,故本結(jié)論是錯(cuò)誤的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本結(jié)論是正確的;④:因?yàn)?,所以異面直線與所成的角為,在正方形中,,故本結(jié)論是錯(cuò)誤的,因此正確結(jié)論的序號(hào)是①③.【點(diǎn)睛】本題考查了線面平行的判定定理、線面垂直的判定定理、性質(zhì)定理,考查了異面直線所成的角、線面垂直的性質(zhì).14、【解析】
由題意得,且,,由=,解得即可.【詳解】已知,是夾角為的兩個(gè)單位向量,所以,得,若解得故答案為【點(diǎn)睛】本題考查了向量數(shù)量積的運(yùn)算性質(zhì),考查了計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
作出函數(shù)的圖像,根據(jù)圖像可得答案.【詳解】因?yàn)?,所以,所以,所以,作出函?shù)的圖像,由圖可知故答案為:【點(diǎn)睛】本題考查了正弦型函數(shù)的圖像,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.16、【解析】
根據(jù)函數(shù)經(jīng)過點(diǎn)求出冪函數(shù)的解析式,利用反函數(shù)的求法,即可求解.【詳解】因?yàn)辄c(diǎn)在冪函數(shù)的圖象上,所以,解得,所以冪函數(shù)的解析式為,則,所以原函數(shù)的反函數(shù)為.故答案為:【點(diǎn)睛】本題主要考查了冪函數(shù)的解析式的求法,以及反函數(shù)的求法,其中熟記反函數(shù)的求法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用正弦定理,三角函數(shù)恒等變換,可得,結(jié)合范圍,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面積公式即可求解;方法2:由正弦定理可得,,并將其代入可得,然后再化簡(jiǎn),根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求得面積的最大值.【詳解】解:(I)因?yàn)?,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以當(dāng)且僅當(dāng)時(shí)取等號(hào),所以△ABC面積的最大值為方法2:因?yàn)?,所以,,所以,所以,?dāng)且僅當(dāng),即,當(dāng)時(shí)取等號(hào).所以△ABC面積的最大值為.【點(diǎn)睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.18、(1),,;(2)猜想,證明見解析.【解析】
(1)利用遞推公式可計(jì)算出、、的值;(2)根據(jù)數(shù)列的前四項(xiàng)可猜想出,然后利用數(shù)學(xué)歸納法即可證明出猜想成立.【詳解】(1),,則,,;(2)猜想,下面利用數(shù)學(xué)歸納法證明.假設(shè)當(dāng)時(shí)成立,即,那么當(dāng)時(shí),,這說明當(dāng)時(shí),猜想也成立.由歸納原理可知,.【點(diǎn)睛】本題考查利用數(shù)列遞推公式寫出數(shù)列中的項(xiàng),同時(shí)也考查了利用數(shù)學(xué)歸納法證明數(shù)列通項(xiàng)公式,考查計(jì)算能力與推理能力,屬于中等題.19、(1)眾數(shù)為75,中位數(shù)為73.33;(2).【解析】
(1)由頻率分布直方圖能求出a=0.1.由此能求出眾數(shù)和中位數(shù);(2)用分層抽樣的方法從[40,60)的學(xué)生中抽取一個(gè)容量為5的樣本,從這五人中任選兩人參加補(bǔ)考,基本事件總數(shù),這兩人的分?jǐn)?shù)至少一人落在[50,60)包含的基本事件個(gè)數(shù),由此能求出這兩人的分?jǐn)?shù)至少一人落在[50,60)的概率.【詳解】(1)由頻率分布直方圖得:,
解得,
所以眾數(shù)為:,的頻率為,
的頻率為,
中位數(shù)為:.(2)用分層抽樣的方法從的學(xué)生中抽取一個(gè)容量為5的樣本,
的頻率為0.1,的頻率為0.15,
中抽到人,中抽取人,從這五人中任選兩人參加補(bǔ)考,
基本事件總數(shù),這兩人的分?jǐn)?shù)至少一人落在包含的基本事件個(gè)數(shù),所以這兩人的分?jǐn)?shù)至少一人落在的概率.【點(diǎn)睛】在求解有關(guān)古典概型概率的問題時(shí),首先求出樣本空間中基本事件的總數(shù),其次求出概率事件中含有多少個(gè)基本事件,然后根據(jù)公式求得概率20、(1)(2)【解析】
(1)利用正弦定理實(shí)現(xiàn)邊角轉(zhuǎn)化,逆用兩角和的正弦公式,進(jìn)行化簡(jiǎn),最后可求出角的大??;(2)利用面積公式結(jié)合,可以求出的值,再利用余弦定理可以求出邊的長.【詳解】(1)在中,由正弦定理得,,故,,,代入,并兩邊同除以,得:,即,因?yàn)樵谥校?,所以,故,又由可得,所以,同樣由得?(2)因?yàn)榈拿娣e為,所以,又由(1)得:,所以,,又,所以,.由余弦定理得:所以.【點(diǎn)睛】本題考查了了正弦定理的應(yīng)用,考查了面積公式,考查了利用余弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 科創(chuàng)孵化器市場(chǎng)需求分析
- 金融設(shè)計(jì)師工作總結(jié)
- 二零二五年度企事業(yè)單位食堂承包經(jīng)營合同范本2篇
- 二零二五年度住宅二手房交易安全協(xié)議書3篇
- 二零二五版消防設(shè)備安裝指導(dǎo)與圖紙?jiān)O(shè)計(jì)服務(wù)合同
- 遠(yuǎn)程抄表施工方案
- 二零二五年個(gè)人獨(dú)資企業(yè)股權(quán)轉(zhuǎn)讓協(xié)議書與合同解除條件
- 二零二五個(gè)人股東股權(quán)回購協(xié)議范本4篇
- 二零二五版無抵押個(gè)人藝術(shù)品購買貸款合同3篇
- 二零二五版消防樓梯緊急疏散指示系統(tǒng)安裝合同3篇
- 乳腺癌的綜合治療及進(jìn)展
- 【大學(xué)課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025年八省聯(lián)考高考語文試題真題解讀及答案詳解課件
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院2025年工作計(jì)劃
- 信息安全意識(shí)培訓(xùn)課件
- 2024年山東省泰安市初中學(xué)業(yè)水平生物試題含答案
- 美的MBS精益管理體系
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 2024安全員知識(shí)考試題(全優(yōu))
- 冠心病課件完整版本
- 2024年衛(wèi)生資格(中初級(jí))-中醫(yī)外科學(xué)主治醫(yī)師考試近5年真題集錦(頻考類試題)帶答案
評(píng)論
0/150
提交評(píng)論