云南省曲靖市宣威三中新高考數(shù)學(xué)三模試卷及答案解析_第1頁(yè)
云南省曲靖市宣威三中新高考數(shù)學(xué)三模試卷及答案解析_第2頁(yè)
云南省曲靖市宣威三中新高考數(shù)學(xué)三模試卷及答案解析_第3頁(yè)
云南省曲靖市宣威三中新高考數(shù)學(xué)三模試卷及答案解析_第4頁(yè)
云南省曲靖市宣威三中新高考數(shù)學(xué)三模試卷及答案解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省曲靖市宣威三中新高考數(shù)學(xué)三模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若時(shí),恒成立,則實(shí)數(shù)的值為()A. B. C. D.2.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,則()A. B. C. D.4.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A. B. C. D.5.已知集合,,若,則()A.或 B.或 C.或 D.或6.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿(mǎn)足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.7.已知函數(shù),則()A.1 B.2 C.3 D.48.在中,,,,若,則實(shí)數(shù)()A. B. C. D.9.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.10.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.11.已知滿(mǎn)足,則()A. B. C. D.12.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍B.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的倍C.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的倍D.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍二、填空題:本題共4小題,每小題5分,共20分。13.圓心在曲線(xiàn)上的圓中,存在與直線(xiàn)相切且面積為的圓,則當(dāng)取最大值時(shí),該圓的標(biāo)準(zhǔn)方程為_(kāi)_____.14.已知非零向量的夾角為,且,則______.15.已知,分別是橢圓:()的左、右焦點(diǎn),過(guò)左焦點(diǎn)的直線(xiàn)與橢圓交于、兩點(diǎn),且,,則橢圓的離心率為_(kāi)_________.16.函數(shù)過(guò)定點(diǎn)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線(xiàn)與平面所成的角為,求平面與平面所成銳二面角的余弦值.18.(12分)已知在中,角,,的對(duì)邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.19.(12分)已知的內(nèi)角的對(duì)邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長(zhǎng)是否有最大值?如果有,求出這個(gè)最大值,如果沒(méi)有,請(qǐng)說(shuō)明理由.20.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線(xiàn)與平面所成角的正弦值.21.(12分)4月23日是“世界讀書(shū)日”,某中學(xué)開(kāi)展了一系列的讀書(shū)教育活動(dòng).學(xué)校為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個(gè)讀書(shū)小組(每名學(xué)生只能參加一個(gè)讀書(shū)小組)學(xué)生抽取12名學(xué)生參加問(wèn)卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:小組甲乙丙丁人數(shù)12969(1)從參加問(wèn)卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,求這2人來(lái)自同一個(gè)小組的概率;(2)從已抽取的甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取2人,用表示抽得甲組學(xué)生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.22.(10分)如圖,在中,已知,,,為線(xiàn)段的中點(diǎn),是由繞直線(xiàn)旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時(shí),求的值;(2)當(dāng)時(shí),求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

通過(guò)分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點(diǎn),解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因?yàn)闀r(shí),恒成立,于是兩函數(shù)必須有相同的零點(diǎn),所以,解得.故選:D【點(diǎn)睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點(diǎn)問(wèn)題,考查不等式的恒成立問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.2、B【解析】

由共軛復(fù)數(shù)的定義得到,通過(guò)三角函數(shù)值的正負(fù),以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因?yàn)?,,所以在?fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限.故選:B【點(diǎn)睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.3、D【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,即當(dāng)?shù)讛?shù)大于1時(shí)單調(diào)遞增,當(dāng)?shù)讛?shù)大于零小于1時(shí)單調(diào)遞減,對(duì)選項(xiàng)逐一驗(yàn)證即可得到正確答案.【詳解】因?yàn)椋?,所以是減函數(shù),又因?yàn)?,所以,,所以,,所以A,B兩項(xiàng)均錯(cuò);又,所以,所以C錯(cuò);對(duì)于D,,所以,故選D.【點(diǎn)睛】這個(gè)題目考查的是應(yīng)用不等式的性質(zhì)和指對(duì)函數(shù)的單調(diào)性比較大小,兩個(gè)式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時(shí)可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.4、B【解析】

利用等差數(shù)列的性質(zhì)求出的值,然后利用等差數(shù)列求和公式以及等差中項(xiàng)的性質(zhì)可求出的值.【詳解】由等差數(shù)列的性質(zhì)可得,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列基本性質(zhì)的應(yīng)用,同時(shí)也考查了等差數(shù)列求和,考查計(jì)算能力,屬于基礎(chǔ)題.5、B【解析】

因?yàn)?所以,所以或.若,則,滿(mǎn)足.若,解得或.若,則,滿(mǎn)足.若,顯然不成立,綜上或,選B.6、D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)椋砸乖跁r(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問(wèn)題,難度較大.7、C【解析】

結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點(diǎn)睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.8、D【解析】

將、用、表示,再代入中計(jì)算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線(xiàn)性運(yùn)算,是一道中檔題.9、A【解析】

根據(jù)實(shí)數(shù)滿(mǎn)足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問(wèn)題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問(wèn)題的解法,屬于中檔題.10、D【解析】

設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.11、A【解析】

利用兩角和與差的余弦公式展開(kāi)計(jì)算可得結(jié)果.【詳解】,.故選:A.【點(diǎn)睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.12、D【解析】

先求得,再根據(jù)三角函數(shù)圖像變換的知識(shí),選出正確選項(xiàng).【詳解】依題意,所以由向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍得到的圖像.故選:D【點(diǎn)睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計(jì)算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可得圓的面積求出圓的半徑,由圓心在曲線(xiàn)上,設(shè)圓的圓心坐標(biāo),到直線(xiàn)的距離等于半徑,再由均值不等式可得的最大值時(shí)圓心的坐標(biāo),進(jìn)而求出圓的標(biāo)準(zhǔn)方程.【詳解】設(shè)圓的半徑為,由題意可得,所以,由題意設(shè)圓心,由題意可得,由直線(xiàn)與圓相切可得,所以,而,,所以,即,解得,所以的最大值為2,當(dāng)且僅當(dāng)時(shí)取等號(hào),可得,所以圓心坐標(biāo)為:,半徑為,所以圓的標(biāo)準(zhǔn)方程為:.故答案為:.【點(diǎn)睛】本題考查直線(xiàn)與圓的位置關(guān)系及均值不等式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意驗(yàn)正等號(hào)成立的條件.14、1【解析】

由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,

可得,

解得,

故答案為:1.【點(diǎn)睛】本題考查根據(jù)向量的數(shù)量積運(yùn)算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡(jiǎn)求解即可,屬于基礎(chǔ)題.15、【解析】

設(shè),則,,由知,,,作,垂足為C,則C為的中點(diǎn),在和中分別求出,進(jìn)而求出的關(guān)系式,即可求出橢圓的離心率.【詳解】如圖,設(shè),則,,由橢圓定義知,,因?yàn)?所以,,作,垂足為C,則C為的中點(diǎn),在中,因?yàn)?所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點(diǎn)睛】本題考查橢圓的離心率和直線(xiàn)與橢圓的位置關(guān)系;利用橢圓的定義,結(jié)合焦點(diǎn)三角形和余弦定理是求解本題的關(guān)鍵;屬于中檔題、常考題型.16、【解析】

令,,與參數(shù)無(wú)關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無(wú)關(guān),所有過(guò)定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問(wèn)題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無(wú)關(guān),熟記常見(jiàn)函數(shù)的定點(diǎn)可以節(jié)省解題時(shí)間.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】

(1)由底面為菱形,得,再由底面,可得,結(jié)合線(xiàn)面垂直的判定可得平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線(xiàn)及過(guò)點(diǎn)且垂直于平面的直線(xiàn)分別為軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個(gè)法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線(xiàn)與平面所成的角為,在中,由,解得.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線(xiàn)及過(guò)點(diǎn)且垂直于平面的直線(xiàn)分別為軸建立空間直角坐標(biāo)系.則,,,,.,,,.設(shè)平面與平面的一個(gè)法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查直線(xiàn)與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.18、(1);(2).【解析】分析:(1)在式子中運(yùn)用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運(yùn)用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴.∴面積的最大值為.點(diǎn)睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時(shí)要注意整體代換的應(yīng)用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運(yùn)用基本不等式求最值時(shí),要注意等號(hào)成立的條件,在解題中必須要注明.19、(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】

(Ⅰ)利用正弦定理將角化邊,再由余弦定理計(jì)算可得;(Ⅱ)由正弦定理可得,則,再根據(jù)正弦函數(shù)的性質(zhì)計(jì)算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因?yàn)?,所?(Ⅱ)當(dāng)時(shí),的周長(zhǎng)有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因?yàn)?,所以,所以?dāng)即時(shí),取到最大值2,所以的周長(zhǎng)有最大值,最大值為3.【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,以及三角函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.20、(1)見(jiàn)證明;(2)【解析】

(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線(xiàn)與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過(guò)點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線(xiàn)與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線(xiàn)面垂直,線(xiàn)線(xiàn)垂直,利用空間直角坐標(biāo)系解決線(xiàn)面夾角問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.21、(1)(2)見(jiàn)解析,【解析】

(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問(wèn)卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,基本事件總數(shù)為,這兩人來(lái)自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取2人,而甲、丙兩個(gè)小組學(xué)生分別有4人和2人,所以抽取的兩人中是甲組的學(xué)生的人數(shù)的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量的分布列和數(shù)學(xué)期望.【詳解】(1)由題設(shè)易得,問(wèn)卷調(diào)查從四個(gè)小組中抽取的人數(shù)分別為4,3,2,3(人),從參加問(wèn)卷調(diào)查的12名學(xué)生中隨機(jī)抽取兩名的取法共有(種),抽取的兩名學(xué)生來(lái)自同一小組的取法共有(種),所以,抽取的兩名學(xué)生來(lái)自同一個(gè)小組的概率為(2)由(1)知,在參加問(wèn)卷調(diào)查的12名學(xué)生中,來(lái)自甲、丙兩小組的學(xué)生人數(shù)分別為4人、2人,所以,抽取的兩人中是甲組的學(xué)生的人數(shù)的可能取值為0,1,2,因?yàn)樗噪S機(jī)變量的分布列為:012所求的期望為【點(diǎn)睛】此題考查概率

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論