版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省梅縣東山中學2025屆高一下數(shù)學期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角以坐標系中為始邊,終邊與單位圓交于點,則的值為()A. B. C. D.2.如圖所示,程序框圖算法流程圖的輸出結果是A. B. C. D.3.已知,,則()A.1 B.2 C. D.34.設,則()A. B.C. D.5.等差數(shù)列中,,且,且,是其前項和,則下列判斷正確的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于6.要從已編號(1~50)的50枚最新研制的某型導彈中隨機抽取5枚來進行發(fā)射試驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5枚導彈的編號可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,327.同時具有性質(zhì):“①最小正周期是;②圖象關于直線對稱;③在上是單調(diào)遞增函數(shù)”的一個函數(shù)可以是()A. B.C. D.8.從一批產(chǎn)品中取出兩件產(chǎn)品,事件“至少有一件是次品”的對立事件是A.至多有一件是次品 B.兩件都是次品C.只有一件是次品 D.兩件都不是次品9.如圖是一個射擊靶的示意圖,其中每個圓環(huán)的寬度與中心圓的半徑相等.某人朝靶上任意射擊一次沒有脫靶,則其命中深色部分的概率為()A. B. C. D.10.在中,已知,則等于()A. B.C.或 D.或二、填空題:本大題共6小題,每小題5分,共30分。11.如圖是一個算法流程圖.若輸出的值為4,則輸入的值為______________.12.等比數(shù)列中首項,公比,則______.13.在中,角所對的邊分別為,,則____14.函數(shù)的部分圖像如圖所示,則的值為________.15.在△ABC中,,則________.16.己知是等差數(shù)列,是其前項和,,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)用五點法作圖,填表井作出的圖像.x0y(2)求在,的最大值和最小值;(3)若不等式在上恒成立,求實數(shù)m的取值范圍.18.已知數(shù)列滿足,.(Ⅰ)求,的值,并證明:0<≤1;(Ⅱ)證明:;(Ⅲ)證明:.19.定理:若函數(shù)的圖象關于直線對稱,且方程有個根,則這個根之和為.利用上述定理,求解下列問題:(1)已知函數(shù),,設函數(shù)的圖象關于直線對稱,求的值及方程的所有根之和;(2)若關于的方程在實數(shù)集上有唯一的解,求的值.20.某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:萬元)存在較好的線性關系,下表記錄了最近5次該產(chǎn)品的相關數(shù)據(jù).x(萬元)357911y(萬元)810131722(1)求y關于x的線性回歸方程;(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬元的毛利率更大還是投入成本15萬元的毛利率更大(毛利率)?相關公式:,.21.平面四邊形中,.(1)若,求;(2)設,若,求面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)題意可知的值,從而可求的值.【詳解】因為,,則.故選A.【點睛】本題考查任意角的三角函數(shù)的基本計算,難度較易.若終邊與單位圓交于點,則.2、D【解析】
模擬程序圖框的運行過程,得出當時,不再運行循環(huán)體,直接輸出S值.【詳解】模擬程序圖框的運行過程,得S=0,n=2,n<8滿足條件,進入循環(huán):S=滿足條件,進入循環(huán):進入循環(huán):不滿足判斷框的條件,進而輸出s值,該程序運行后輸出的是計算:.故選D.【點睛】本題考查了程序框圖的應用問題,是基礎題目.根據(jù)程序框圖(或偽代碼)寫程序的運行結果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進行分析管理)?②建立數(shù)學模型,根據(jù)第一步分析的結果,選擇恰當?shù)臄?shù)學模型③解模.3、A【解析】
根據(jù)向量的坐標運算法則直接求解.【詳解】因為,,所以,所以,故選:A.【點睛】本題考查向量的坐標運算,屬于基礎題.4、C【解析】
函數(shù),函數(shù)且,求出【詳解】因為且且所以故選:C【點睛】本題考查的是與反三角函數(shù)有關的定義域問題,較簡單.5、C【解析】
由,且可得,,,,結合等差數(shù)列的求和公式即等差數(shù)列的性質(zhì)即可判斷.【詳解】,且,,數(shù)列的前項都是負數(shù),,,,由等差數(shù)列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故選:C.【點睛】本題考查等差數(shù)列前項和符號的判斷,解題時要充分結合等差數(shù)列下標和的性質(zhì)以及等差數(shù)列求和公式進行計算,考查分析問題和解決問題的能力,屬于中等題.6、B【解析】
對導彈進行平均分組,根據(jù)系統(tǒng)抽樣的基本原則可得結果.【詳解】將50枚導彈平均分為5組,可知每組50÷5=10枚導彈即分組為:1~10,11~20,21~30,31~40,41~50按照系統(tǒng)抽樣原則可知每組抽取1枚,且編號成公差為10的等差數(shù)列由此可確定B正確本題正確選項:B【點睛】本題考查抽樣方法中的系統(tǒng)抽樣,屬于基礎題.7、D【解析】
利用正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì),逐一檢驗,可得結論.【詳解】A,對于y=cos(),它的周期為4π,故不滿足條件.B,對于y=sin(2x),在區(qū)間上,2x∈[,],故該函數(shù)在區(qū)間上不是單調(diào)遞增函數(shù),故不滿足條件.C,對于y=cos(2x),當x時,函數(shù)y,不是最值,故不滿足②它的圖象關于直線x對稱,故不滿足條件.D,對于y=sin(2x),它的周期為π,當x時,函數(shù)y=1,是函數(shù)的最大值,滿足它的圖象關于直線x對稱;且在區(qū)間上,2x∈[,],故該函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),滿足條件.故選:D.【點睛】本題主要考查了正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì),屬于中檔題.8、D【解析】試題分析:根據(jù)對立事件的定義,至少有n個的對立事件是至多有n﹣1個,由事件A:“至少有一件次品”,我們易得結果.解:∵至少有n個的否定是至多有n﹣1個又∵事件A:“至少有一件次品”,∴事件A的對立事件為:至多有零件次品,即是兩件都不是次品.故答案為D.點評:本題考查的知識點是互斥事件和對立事件,互斥事件關鍵是要抓住不可能同時發(fā)生的要點,對立事件則要抓住有且只有一個發(fā)生,可以轉(zhuǎn)化命題的否定,集合的補集來進行求解.9、D【解析】
分別求出大圓面積和深色部分面積即可得解.【詳解】設中心圓的半徑為,所以中心圓的面積為,8環(huán)面積為,射擊靶的面積為,所以命中深色部分的概率為.故選:D【點睛】此題考查幾何概型,屬于面積型,關鍵在于準確求解面積,根據(jù)圓環(huán)特征分別求出面積即可得解.10、C【解析】在中,已知,由余弦定理,即,解得或,又,或,故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解析】
對的范圍分類,利用流程圖列方程即可得解.【詳解】當時,由流程圖得:令,解得:,滿足題意.當時,由流程圖得:令,解得:,不滿足題意.故輸入的值為:【點睛】本題主要考查了流程圖知識,考查分類思想及方程思想,屬于基礎題.12、9【解析】
根據(jù)等比數(shù)列求和公式,將進行轉(zhuǎn)化,然后得到關于和的等式,結合,討論出和的值,得到答案.【詳解】因為等比數(shù)列中首項,公比,所以成首項為,公比為的等比數(shù)列,共項,所以整理得因為所以可得,等式右邊為整數(shù),故等式左邊也需要為整數(shù),則應是的約數(shù),所以可得,所以,當時,得,此時當時,得,此時當時,得,此時,所以,故答案為:.【點睛】本題考查等比數(shù)列求和的基本量運算,涉及分類討論的思想,屬于中檔題.13、【解析】
利用正弦定理將邊角關系式中的邊都化成角,再結合兩角和差公式進行整理,從而得到.【詳解】由正弦定理可得:即:本題正確結果:【點睛】本題考查李用正弦定理進行邊角關系式的化簡問題,屬于常規(guī)題.14、【解析】
由圖可得,,求出,得出,利用,然后化簡即可求解【詳解】由題圖知,,所以,所以.由正弦函數(shù)的對稱性知,所以答案:【點睛】本題利用函數(shù)的周期特性求解,難點在于通過圖像求出函數(shù)的解析式和函數(shù)的最小正周期,屬于基礎題15、【解析】
因為所以注意到:故.故答案為:16、-1【解析】
由等差數(shù)列的結合,代入計算即可.【詳解】己知是等差數(shù)列,是其前項和,所以,得,由等差中項得,所以.故答案為-1【點睛】本題考查了等差數(shù)列前項和公式和等差中項的應用,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)時,,時,;(3).【解析】
(1)當時,求出相應的x,然后填入表中;標出5個點,然后用一條光滑的曲線把它們連接起來;(2)先根據(jù)x的范圍求出的范圍,再由正弦函數(shù)的性質(zhì)可求出函數(shù)的最大值和最小值;(3)不等式在上恒成立,轉(zhuǎn)化為在上恒成立,進一步轉(zhuǎn)化為m-2,m+2與函數(shù)在上的最值關系,列不等式后求得實數(shù)m的取值范圍.【詳解】(1)x0y131-10(2),,即,所以的最大值為3,最小值為2.(3),,由(2)知,,,且,即m的取值范圍為.【點睛】本題考查正弦函數(shù)的最值和恒成立問題,把不等式恒成立問題轉(zhuǎn)化為含m的代數(shù)式與的最值關系的問題是解決本題的關鍵,屬于中檔題.18、(Ⅰ)見證明;(Ⅱ)見證明;(Ⅲ)見證明【解析】
(I)直接代入計算得,利用得從而可證結論;(II)證明,即可;(III)由(II)可得,即,,應用累加法可得,從而證得結論.【詳解】解:(Ⅰ)由已知得,.因為所以.所以又因為所以與同號.又因為>0所以.(Ⅱ)因為又因為,所以.同理又因為,所以綜上,(Ⅲ)證明:由(Ⅱ)可得所以,即所以,,...,累加可得所以由(Ⅱ)可得所以,即所以,,...,累加可得所以即綜上所述.【點睛】本題考查數(shù)列遞推公式,考查數(shù)列中的不等式證明.第(I)問題關鍵是證明數(shù)列是遞減數(shù)列,第(II)問題是用作差法證明,第(III)問題是在第(II)問基礎上用累加法求和(先求).19、(1),;(2).【解析】
(1)根據(jù)定義域和對稱性即可得出的值,求出的解的個數(shù),利用定理得出所有根的和;(2)令,則為偶函數(shù),于是的唯一零點為,于是,即可解出的值.【詳解】解:(1)在上的圖象關于直線對稱,,令得,,即,.在上有7個零點,方程的所以根之和為.(2)令,則,是偶函數(shù),的圖象關于軸對稱,即關于直線對稱,只有1解,的唯一解為,即,,解得.【點睛】本題考查了函數(shù)零點與函數(shù)圖象對稱性的關系,屬于基礎題.20、(1);(2)12萬元的毛利率更大【解析】
(1)根據(jù)題意代入數(shù)值分別算出與即可得解;(2)分別把與代入線性回歸方程算出再算出毛利率即可得解.【詳解】(1)由題意,.,,,故y關于x的線性回歸方程為.(2)當時,,對應的毛利率為,當時,,對應的毛利率為,故投入成本12萬元的毛利率更大.【點睛】本題考查了線性回歸方程的求解和應用,考查了計算能力,屬于基礎題.21、(1);(2)【解析】
(1)法一:在中,利用余弦定理即可得到的長度;法二:在中,由正弦定理可求得,再利用正弦定理即可得到的長度;(2)在中,使用正弦定理可知是等邊三角形或直角三角形,分兩種情況分別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨床科研課題
- 2024版演出經(jīng)紀合同范本
- 2024年骨傷科護理工作總結
- 2024版離婚協(xié)議書律師建議3篇
- 2024掛靠經(jīng)營合作合同模板大全版
- 小學信息技術冀教版三年級下冊《十八“龜兔賽跑”卡通畫》說課稿
- 第二單元第十課《表格的應用》說課稿 2023-2024學年浙教版(2013)初中信息技術七年級上冊001
- 2025年魯教五四新版九年級歷史下冊階段測試試卷含答案
- 2024版建筑工程施工進度合同
- 2024版電器防爆技術協(xié)議書
- 通力電梯KCE電氣系統(tǒng)學習指南
- 風電場崗位任職資格考試題庫大全-下(填空題2-2)
- 九年級數(shù)學特長生選拔考試試題
- 幼兒園交通安全宣傳課件PPT
- 門窗施工組織設計與方案
- 健身健美(課堂PPT)
- (完整版)財務管理學課后習題答案-人大版
- 錨索試驗總結(共11頁)
- 移動腳手架安全交底
- 人教版“課標”教材《統(tǒng)計與概率》教學內(nèi)容、具體目標和要求
- 矩形鋼板水箱的設計與計算
評論
0/150
提交評論