廣西百色市普通高中2025屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
廣西百色市普通高中2025屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
廣西百色市普通高中2025屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
廣西百色市普通高中2025屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
廣西百色市普通高中2025屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西百色市普通高中2025屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)公差不為零的等差數(shù)列an的前n項(xiàng)和為Sn.若a2+A.10 B.11 C.12 D.132.“”是“”成立的()A.充分非必要條件. B.必要非充分條件.C.充要條件. D.既非充分又非必要條件.3.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù).例如:,,已知函數(shù),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.4.已知等比數(shù)列的前項(xiàng)和為,,,則()A.31 B.15 C.8 D.75.設(shè)變量,滿足約束條件則目標(biāo)函數(shù)的最小值為()A.4 B.-5 C.-6 D.-86.函數(shù)的一個對稱中心是()A. B. C. D.7.設(shè)全集,集合,,則()A. B.C. D.8.已知銳角中,角所對的邊分別為,若,則的取值范圍是()A. B. C. D.9.設(shè)為等比數(shù)列的前n項(xiàng)和,若,,成等差數(shù)列,則()A.,,成等差數(shù)列 B.,,成等比數(shù)列C.,,成等差數(shù)列 D.,,成等比數(shù)列10.已知直線和互相平行,則它們之間的距離是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在三棱錐P-ABC中,平面PAB⊥平面ABC,ΔABC是邊長為23的等邊三角形,其中PA=PB=12.在平行六面體中,為與的交點(diǎn),若存在實(shí)數(shù),使向量,則__________.13.已知數(shù)列的前項(xiàng)和滿足,則______.14.已知,且,則_____.15.若集合,,則集合________.16.已知等差數(shù)列的前n項(xiàng)和為,若,則的值為______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在平面直角坐標(biāo)系中,已知圓:,點(diǎn),過點(diǎn)的直線與圓交于不同的兩點(diǎn)(不在y軸上).(1)若直線的斜率為3,求的長度;(2)設(shè)直線的斜率分別為,求證:為定值,并求出該定值;(3)設(shè)的中點(diǎn)為,是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.18.如圖,已知三棱柱的側(cè)棱垂直于底面,,,點(diǎn),分別為和的中點(diǎn).(1)若,求三棱柱的體積;(2)證明:平面;(3)請問當(dāng)為何值時,平面,試證明你的結(jié)論.19.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對的邊分別為,,,若,且為鈍角,,求面積的最大值.20.已知向量,.(I)若,共線,求的值.(II)若,求的值;(III)當(dāng)時,求與夾角的余弦值.21.已知向量,,且(1)求·及;(2)若,求的最小值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

由等差數(shù)列的前n項(xiàng)和公式Sn=n(a1+an)【詳解】∵S13=117,∴13a1+a132=117,∴a1【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)求和前n項(xiàng)和公式及等差數(shù)列下標(biāo)和的性質(zhì),屬于基礎(chǔ)題。2、A【解析】

依次分析充分性與必要性是否成立.【詳解】時,而時不一定成立,所以“”是“”成立的充分非必要條件,選A.【點(diǎn)睛】本題考查充要關(guān)系判定,考查基本分析判斷能力,屬基礎(chǔ)題3、D【解析】

分離常數(shù)法化簡f(x),根據(jù)新定義即可求得函數(shù)y=[f(x)]的值域.【詳解】,又>0,∴,∴∴當(dāng)x∈(1,1)時,y=[f(x)]=1;當(dāng)x∈[1,)時,y=[f(x)]=1.∴函數(shù)y=[f(x)]的值域是{1,1}.故選D.【點(diǎn)睛】本題考查了新定義的理解和應(yīng)用,考查了分離常數(shù)法求一次分式函數(shù)的值域,是中檔題.4、B【解析】

利用基本元的思想,將已知條件轉(zhuǎn)化為的形式,由此求得,進(jìn)而求得.【詳解】由于數(shù)列是等比數(shù)列,故,由于,故解得,所以.故選:B.【點(diǎn)睛】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量的計算,考查等比數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.5、D【解析】繪制不等式組所表示的平面區(qū)域,結(jié)合目標(biāo)函數(shù)的幾何意義可知,目標(biāo)函數(shù)在點(diǎn)處取得最小值.本題選擇D選項(xiàng).6、A【解析】

令,得:,即函數(shù)的對稱中心為,再求解即可.【詳解】解:令,解得:,即函數(shù)的對稱中心為,令,即函數(shù)的一個對稱中心是,故選:A.【點(diǎn)睛】本題考查了正切函數(shù)的對稱中心,屬基礎(chǔ)題.7、A【解析】

進(jìn)行交集、補(bǔ)集的運(yùn)算即可.【詳解】?UB={x|﹣2<x<1};∴A∩(?UB)={x|﹣1<x<1}.故選:A.【點(diǎn)睛】考查描述法的定義,以及交集、補(bǔ)集的運(yùn)算.8、B【解析】

利用余弦定理化簡后可得,再利用正弦定理把邊角關(guān)系化為角的三角函數(shù)的關(guān)系式,從而得到,因此,結(jié)合的范圍可得所求的取值范圍.【詳解】,因?yàn)闉殇J角三角形,所以,,,故,選B.【點(diǎn)睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.9、A【解析】

先說明不符合題意,由時,成等差數(shù)列,算得,然后用表示出來,即可得到本題答案.【詳解】設(shè)等比數(shù)列的公比為q,首項(xiàng)為,當(dāng)時,有,不滿足成等差數(shù)列;當(dāng)時,因?yàn)槌傻炔顢?shù)列,所以,即,化簡得,解得,所以,,,則成等差數(shù)列.故選:A【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合應(yīng)用,計算出等比數(shù)列的公比是關(guān)鍵,考查計算能力,屬于中等題.10、D【解析】

由已知中直線和互相平行,求出的值,再根據(jù)兩條平行線間的距離公式求得它們之間的距離.【詳解】∵直線和互相平行,則,將直線的方程化為,則兩條平行直線之間的距離,===.故選:D.【點(diǎn)睛】本題主要考查兩條直線平行的性質(zhì),兩條平行線間的距離公式的應(yīng)用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、65π【解析】

本題首先可以通過題意畫出圖像,然后通過三棱錐的圖像性質(zhì)以及三棱錐的外接球的相關(guān)性質(zhì)來確定圓心的位置,最后根據(jù)各邊所滿足的幾何關(guān)系列出算式,即可得出結(jié)果。【詳解】如圖所示,作AB中點(diǎn)D,連接PD、CD,在CD上作三角形ABC的中心E,過點(diǎn)E作平面ABC的垂線,在垂線上取一點(diǎn)O,使得PO=OC。因?yàn)槿忮F底面是一個邊長為23的等邊三角形,E所以三棱錐的外接球的球心在過點(diǎn)E的平面ABC的垂線上,因?yàn)镻O=OC,P、C兩點(diǎn)在三棱錐的外接球的球面上,所以O(shè)點(diǎn)即為球心,因?yàn)槠矫鍼AB⊥平面ABC,PA=PB,D為AB中點(diǎn),所以PD⊥平面ABCCD=CA2-ADPD=P設(shè)球的半徑為r,則有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面積為S=4πr【點(diǎn)睛】本題考查三棱錐的相關(guān)性質(zhì),主要考查三棱錐的外接球的相關(guān)性質(zhì),考查如何通過三棱錐的幾何特征來確定三棱錐的外接球與半徑,考查推理能力,考查化歸與轉(zhuǎn)化思想,是難題。12、【解析】

在平行六面體中把向量用用表示,再利用待定系數(shù)法,求得.再求解?!驹斀狻咳鐖D所示:因?yàn)椋忠驗(yàn)?,所以,所?故答案為:【點(diǎn)睛】本題主要考查了空間向量的基本定理,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.13、5【解析】

利用求得,進(jìn)而求得的值.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時上式也滿足,故的通項(xiàng)公式為,故.【點(diǎn)睛】本小題主要考查已知求,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】

首先根據(jù)已知條件求得的值,平方后利用同角三角函數(shù)的基本關(guān)系式求得的值.【詳解】由得,兩邊平方并化簡得,由于,所以.而,由于,所以【點(diǎn)睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.15、【解析】由題意,得,,則.16、1【解析】

由等差數(shù)列的性質(zhì)可得a7+a9+a11=3a9,而S17=17a9,故本題可解.【詳解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案為:1.【點(diǎn)睛】本題考查了等差數(shù)列的前n項(xiàng)和公式與等差數(shù)列性質(zhì)的綜合應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析;(3)見解析【解析】

(1)求出圓心O到直線的距離,已知半徑通過勾股定理即可算出弦長的一半,即可算出弦長。(2)設(shè),直線的方程為,聯(lián)立圓的方程通過韋達(dá)定理化簡即可。(3)設(shè)點(diǎn),根據(jù),得,表示出,的關(guān)系,再聯(lián)立直線和圓的方程得到,與k的關(guān)系,代入可解出k,最后再通過有兩個交點(diǎn)判斷即可求出k值。【詳解】(1)由直線的斜率為3,可得直線的方程為所以圓心到直線的距離為所以(2)直線的方程為,代入圓可得方程設(shè),則所以為定值,定值為0(3)設(shè)點(diǎn),由,可得:,即,化得:由(*)及直線的方程可得:,代入上式可得:,可化為:求得:又由(*)解得:所以不符合題意,所以不存在符合條件的直線.【點(diǎn)睛】此題考查圓錐曲線,一般采用設(shè)而不求通過韋達(dá)定理表示,將需要求解的量用斜率k表示,起到消元的作用,計算相對復(fù)雜,屬于較難題目。18、(1)4;(2)證明見解析;(3)時,平面,證明見解析.【解析】

(1)直接根據(jù)三棱柱體積計算公式求解即可;(2)利用中位線證明面面平行,再根據(jù)面面平行的性質(zhì)定理證明平面;(3)首先設(shè)為,利用平面列出關(guān)于參數(shù)的方程求解即可.【詳解】(1)∵三棱柱的側(cè)棱垂直于底面,且,,,∴由三棱柱體積公式得:;(2)證明:取的中點(diǎn),連接,,∵,分別為和的中點(diǎn),∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)連接,設(shè),則由題意知,,∵三棱柱的側(cè)棱垂直于底面,∴平面平面,∵,∴,又點(diǎn)是的中點(diǎn),∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,則時,平面.【點(diǎn)睛】本題考查了三棱柱的體積公式,線面平行的證明,利用線面垂直求參數(shù),屬于難題.19、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】

(1)利用二倍角和輔助角公式可化簡函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結(jié)果.【詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:單調(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當(dāng)且僅當(dāng)時取等號)即面積的最大值為:【點(diǎn)睛】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問題;涉及到二倍角公式和輔助角公式的應(yīng)用、余弦定理和三角形面積公式的應(yīng)用等知識;求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過與正弦函數(shù)圖象的對應(yīng)關(guān)系來進(jìn)行求解.20、(I);(II);(III)【解析】

(1)根據(jù)題意,由向量平行的坐標(biāo)公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,則有,結(jié)合向量數(shù)量積的坐標(biāo)可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根據(jù)題意,由x的值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論