




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山東濟(jì)寧一中高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.將函數(shù)的圖象向左平移個(gè)長(zhǎng)度單位后,所得到的圖象關(guān)于軸對(duì)稱,則的最小值是()A. B. C. D.2.已知數(shù)列滿足:,,則該數(shù)列中滿足的項(xiàng)共有()項(xiàng)A. B. C. D.3.已知等差數(shù)列中,則()A.10 B.16 C.20 D.244.一元二次不等式的解集為()A. B.C. D.5.已知a,b,c∈R,那么下列命題中正確的是()A.若a>b,則ac2>bc2B.若,則a>bC.若a3>b3且ab<0,則D.若a2>b2且ab>0,則6.已知中,,,為邊上的中點(diǎn),則()A.0 B.25 C.50 D.1007.在中,,,則的外接圓半徑為()A.1 B.2 C. D.8.已知,,且,,則的值為()A. B.1 C. D.9.如圖,長(zhǎng)方體中,,,,分別過(guò),的兩個(gè)平行截面將長(zhǎng)方體分成三個(gè)部分,其體積分別記為,,,.若,則截面的面積為()A. B. C. D.10.已知,,O是坐標(biāo)原點(diǎn),則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若方程的解集為,則__________.12.已知直線與圓交于兩點(diǎn),若,則____.13.過(guò)點(diǎn)且在坐標(biāo)軸上的截距相等的直線的一般式方程是________.14.函數(shù)的最小正周期為_(kāi)_______15.已知為的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量,.若,且,則B=16.函數(shù)的值域是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,四棱錐的底面為平行四邊形,為中點(diǎn).(1)求證:平面;(2)求證:平面.18.已知數(shù)列的前項(xiàng)和為,對(duì)任意滿足,且,數(shù)列滿足,,其前9項(xiàng)和為63.(1)求數(shù)列和的通項(xiàng)公式;(2)令,數(shù)列的前項(xiàng)和為,若存在正整數(shù),有,求實(shí)數(shù)的取值范圍;(3)將數(shù)列,的項(xiàng)按照“當(dāng)為奇數(shù)時(shí),放在前面;當(dāng)為偶數(shù)時(shí),放在前面”的要求進(jìn)行“交叉排列”,得到一個(gè)新的數(shù)列:…,求這個(gè)新數(shù)列的前項(xiàng)和.19.已知圓,過(guò)點(diǎn)的直線與圓相交于不同的兩點(diǎn),.(1)若,求直線的方程.(2)判斷是否為定值.若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.20.在平面直角坐標(biāo)系中,已知點(diǎn)與兩個(gè)定點(diǎn),的距離之比為.(1)求點(diǎn)的坐標(biāo)所滿足的關(guān)系式;(2)求面積的最大值;(3)若恒成立,求實(shí)數(shù)的取值范圍.21.已知向量的夾角為60°,且.(1)求與的值;(2)求與的夾角.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
試題分析:由題意得,,令,可得函數(shù)的圖象對(duì)稱軸方程為,取是軸右側(cè)且距離軸最近的對(duì)稱軸,因?yàn)閷⒑瘮?shù)的圖象向左平移個(gè)長(zhǎng)度單位后得到的圖象關(guān)于軸對(duì)稱,的最小值為,故選B.考點(diǎn):兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質(zhì).【方法點(diǎn)晴】本題主要考查了兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質(zhì),將三角函數(shù)圖象向左平移個(gè)單位,所得圖象關(guān)于軸對(duì)稱,求的最小值,著重考查了三角函數(shù)的化簡(jiǎn)、三角函數(shù)圖象的對(duì)稱性等知識(shí)的靈活應(yīng)用,本題的解答中利用輔助角公式,化簡(jiǎn)得到函數(shù),可取出函數(shù)的對(duì)稱軸,確定距離最近的點(diǎn),即可得到結(jié)論.2、C【解析】
利用累加法求出數(shù)列的通項(xiàng)公式,然后解不等式,得出符合條件的正整數(shù)的個(gè)數(shù),即可得出結(jié)論.【詳解】,,,解不等式,即,即,,則或.故選:C.【點(diǎn)睛】本題考查了數(shù)列不等式的求解,同時(shí)也涉及了利用累加法求數(shù)列通項(xiàng),解題的關(guān)鍵就是求出數(shù)列的通項(xiàng),考查運(yùn)算求解能力,屬于中等題.3、C【解析】
根據(jù)等差數(shù)列性質(zhì)得到,再計(jì)算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的常考題型.4、C【解析】
根據(jù)一元二次不等式的解法,即可求得不等式的解集,得到答案.【詳解】由題意,不等式,即或,解得,即不等式的解集為,故選C.【點(diǎn)睛】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.5、C【解析】
根據(jù)不等式的性質(zhì),對(duì)A、B、C、D四個(gè)選項(xiàng)通過(guò)舉反例進(jìn)行一一驗(yàn)證.【詳解】A.若a>b,則ac2>bc2(錯(cuò)),若c=0,則A不成立;B.若,則a>b(錯(cuò)),若c<0,則B不成立;C.若a3>b3且ab<0,則(對(duì)),若a3>b3且ab<0,則D.若a2>b2且ab>0,則(錯(cuò)),若,則D不成立.故選:C.【點(diǎn)睛】此題主要考查不等關(guān)系與不等式的性質(zhì)及其應(yīng)用,例如舉反例法求解比較簡(jiǎn)單.兩個(gè)式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時(shí)可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.6、C【解析】
三角形為直角三角形,CM為斜邊上的中線,故可知其長(zhǎng)度,由向量運(yùn)算法則,對(duì)式子進(jìn)行因式分解,由平行四邊形法則,求出向量,由長(zhǎng)度計(jì)算向量積.【詳解】由勾股定理逆定理可知三角形為直角三角形,CM為斜邊上的中線,所以,原式=.故選C.【點(diǎn)睛】本題考查向量的線性運(yùn)算及數(shù)量積,數(shù)量積問(wèn)題一般要將兩個(gè)向量轉(zhuǎn)化為已知邊長(zhǎng)和夾角的兩向量,但本題經(jīng)化簡(jiǎn)能得到共線的兩向量所以直接根據(jù)模的大小計(jì)算即可.7、A【解析】
由同角三角函數(shù)關(guān)系式,先求得.再結(jié)合正弦定理即可求得的外接圓半徑.【詳解】中,由同角三角函數(shù)關(guān)系式可得由正弦定理可得所以,即的外接圓半徑為1故選:A【點(diǎn)睛】本題考查了同角三角函數(shù)關(guān)系式的應(yīng)用,正弦定理求三角形外接圓半徑,屬于基礎(chǔ)題.8、A【解析】
由已知求出,的值,再由,展開(kāi)兩角差的余弦求解,即可得答案.【詳解】由,,且,,,,∴,∴,.故選:A.【點(diǎn)睛】本題考查兩角和與差的余弦、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意“拆角配角”思想的運(yùn)用.9、B【解析】
解:由題意知,截面是一個(gè)矩形,并且長(zhǎng)方體的體積V=6×4×3=72,∵V1:V2:V3=1:4:1,∴V1=VAEA1-DFD1=×72=12,則12=×AE×A1A×AD,解得AE=2,在直角△AEA1中,EA1=故截面的面積是EF×EA1=410、D【解析】
根據(jù)向量線性運(yùn)算可得,由坐標(biāo)可得結(jié)果.【詳解】故選:【點(diǎn)睛】本題考查平面向量的線性運(yùn)算,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將利用輔助角公式化簡(jiǎn),可得出的值.【詳解】,其中,,因此,,故答案為.【點(diǎn)睛】本題考查利用輔助角公式化簡(jiǎn)計(jì)算,化簡(jiǎn)時(shí)要熟悉輔助角變形的基本步驟,考查運(yùn)算求解能力,屬于中等題.12、【解析】
根據(jù)點(diǎn)到直線距離公式與圓的垂徑定理求解.【詳解】圓的圓心為,半徑為,圓心到直線的距離:,由得,解得.【點(diǎn)睛】本題考查直線與圓的應(yīng)用.此題也可聯(lián)立圓與直線方程,消元后用弦長(zhǎng)公式求解.13、或【解析】
討論直線過(guò)原點(diǎn)和直線不過(guò)原點(diǎn)兩種情況,分別計(jì)算得到答案.【詳解】當(dāng)直線過(guò)原點(diǎn)時(shí),設(shè),過(guò)點(diǎn),則,即;當(dāng)直線不過(guò)原點(diǎn)時(shí),設(shè),過(guò)點(diǎn),則,即;綜上所述:直線方程為或.故答案為:或.【點(diǎn)睛】本題考查了直線方程,漏解是容易發(fā)生的錯(cuò)誤.14、【解析】
根據(jù)的最小正周期判斷即可.【詳解】因?yàn)榈淖钚≌芷诰鶠?故的最小正周期為.故答案為:【點(diǎn)睛】本題主要考查了正切余切函數(shù)的周期,屬于基礎(chǔ)題型.15、【解析】
根據(jù)得,再利用正弦定理得,化簡(jiǎn)得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【詳解】根據(jù)題意,由正弦定理可得則所以答案為?!军c(diǎn)睛】本題主要考查向量與三角形正余弦定理的綜合應(yīng)用,屬于基礎(chǔ)題。16、【解析】
求出函數(shù)在上的值域,根據(jù)原函數(shù)與反函數(shù)的關(guān)系即可求解.【詳解】因?yàn)楹瘮?shù),當(dāng)時(shí)是單調(diào)減函數(shù)當(dāng)時(shí),;當(dāng)時(shí),所以在上的值域?yàn)楦鶕?jù)反函數(shù)的定義域就是原函數(shù)的值域可得函數(shù)的值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題求一個(gè)反三角函數(shù)的值域,著重考查了余弦函數(shù)的圖像與性質(zhì)和反函數(shù)的性質(zhì)等知識(shí),屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】
(1)通過(guò)證明得線面平行;(2)連接交于,連接,通過(guò)證明得線面平行.【詳解】(1)由題:四棱錐的底面為平行四邊形,所以,平面,平面,所以平面;(2)連接交于,連接,如圖:底面為平行四邊形,是中點(diǎn),為中點(diǎn),所以,平面,平面,所以平面.【點(diǎn)睛】此題考查線面平行的證明,關(guān)鍵在于準(zhǔn)確尋找出線線平行,證明題注意書寫規(guī)范.18、(1);(2);(3)【解析】試題分析:(1)由已知得數(shù)列是等差數(shù)列,從而易得,也即得,利用求得,再求得可得數(shù)列通項(xiàng),利用已知可得是等差數(shù)列,由等差數(shù)列的基本量法可求得;(2)代入得,變形后得,從而易求得和,于是有,只要求得的最大值即可得的最小值,從而得的范圍,研究的單調(diào)性可得;(3)根據(jù)新數(shù)列的構(gòu)造方法,在求新數(shù)列的前項(xiàng)和時(shí),對(duì)分類:,和三類,可求解.試題解析:(1)∵,∴數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,∴,即,∴,又,∴.∵,∴數(shù)列是等差數(shù)列,設(shè)的前項(xiàng)和為,∵且,∴,∴的公差為(2)由(1)知,∴,∴設(shè),則,∴數(shù)列為遞增數(shù)列,∴,∵對(duì)任意正整數(shù),都有恒成立,∴.(3)數(shù)列的前項(xiàng)和,數(shù)列的前項(xiàng)和,①當(dāng)時(shí),;②當(dāng)時(shí),,特別地,當(dāng)時(shí),也符合上式;③當(dāng)時(shí),.綜上:考點(diǎn):等差數(shù)列的通項(xiàng)公式,數(shù)列的單調(diào)性,數(shù)列的求和.19、(1)或.(2)是,定值.【解析】
(1)根據(jù)題意設(shè)出,再聯(lián)立直線方程和圓的方程,得到,,然后由列式,再將的值代入求解,即可求出;(2)先根據(jù)特殊情況,當(dāng)直線與軸垂直時(shí),求出,再說(shuō)明當(dāng)直線與軸不垂直時(shí),是否成立,即可判斷.【詳解】(1)由已知得不與軸垂直,不妨設(shè),,.聯(lián)立消去得,則有,又,,,解得或.所以,直線的方程為或.(2)當(dāng)直線與軸垂直時(shí)(斜率不存在),,的坐標(biāo)分別為,,此時(shí).當(dāng)不與軸垂直時(shí),又由(1),,且,所以.綜上,為定值.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系的應(yīng)用,韋達(dá)定理的應(yīng)用,數(shù)量積的坐標(biāo)表示,以及和圓有關(guān)的定值問(wèn)題的解法的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于中檔題.20、(1)(2)3;(3)【解析】
(1)根據(jù)題意,結(jié)合兩點(diǎn)間距離公式,可以得到等式,化簡(jiǎn)后得到點(diǎn)的坐標(biāo)所滿足的關(guān)系式;(2)設(shè)是曲線上任一點(diǎn),求出的表達(dá)式,結(jié)合的取值范圍,可以求出面積的最大值;(3)恒成立,則恒成立.設(shè),當(dāng)它與圓相切時(shí),取得最大和最小值,利用點(diǎn)到直線距離公式,可以求出取得最大和最小值,最后可以求出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè)的坐標(biāo)是,由,得,化簡(jiǎn)得.(2)由(1)得,點(diǎn)在以為圓心,為半徑的圓上.設(shè)是曲線上任一點(diǎn),則,又,故的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年藥理學(xué)考試的細(xì)節(jié)試題及答案
- 小學(xué)科學(xué)與語(yǔ)文交叉試題及答案
- 2024年汽車維修技術(shù)規(guī)范試題及答案
- 大咯血考試題目及答案
- 寵物營(yíng)養(yǎng)教育的內(nèi)容與策略試題及答案
- 智慧解決方案的可靠性評(píng)估
- 小學(xué)跆拳道課件
- 2024年汽車維修工考試的趨勢(shì)分析試題及答案
- 2024年汽車美容師成就與挑戰(zhàn)考量試題及答案
- 2024年美容師企業(yè)文化理解試題及答案
- 旅游概論(劉偉主編)(全國(guó)高職高專旅游類“十二五”示范教材) 全套課件(中)
- 2023年中國(guó)疾病預(yù)防控制中心招聘應(yīng)屆高校畢業(yè)生考試真題及答案
- 建設(shè)工程檢測(cè)報(bào)告編制導(dǎo)則DB64-T1685-2020
- 項(xiàng)目干系人與干系人管理
- Java基礎(chǔ)實(shí)踐教程-Java編程基礎(chǔ)
- 高等職業(yè)學(xué)校建設(shè)標(biāo)準(zhǔn)(2022年版)
- 無(wú)人機(jī)的生產(chǎn)流程
- 油漆修繕施工方案
- 山東省濟(jì)南市2022-2023學(xué)年高一下學(xué)期期中考試語(yǔ)文試題(解析版)
- 獎(jiǎng)學(xué)金評(píng)定模型
- 室外管網(wǎng)工程-工程施工進(jìn)度計(jì)劃表
評(píng)論
0/150
提交評(píng)論