新疆維吾爾自治區(qū)庫爾勒市新疆兵團第二師華山中學2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
新疆維吾爾自治區(qū)庫爾勒市新疆兵團第二師華山中學2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
新疆維吾爾自治區(qū)庫爾勒市新疆兵團第二師華山中學2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
新疆維吾爾自治區(qū)庫爾勒市新疆兵團第二師華山中學2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
新疆維吾爾自治區(qū)庫爾勒市新疆兵團第二師華山中學2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新疆維吾爾自治區(qū)庫爾勒市新疆兵團第二師華山中學2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線:與直線:平行,則的值為()A.1 B.1或2 C.-2 D.1或-22.若,且,則是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.如圖,正方形中,是的中點,若,則()A. B. C. D.4.已知圓,圓,分別為圓上的點,為軸上的動點,則的最小值為()A. B. C. D.5.函數(shù)的圖象向右平移個單位后,得到函數(shù)的圖象,若為偶函數(shù),則的值為()A. B. C. D.6.已知點是直線上一動點,與是圓的兩條切線,為切點,則四邊形的最小面積為()A. B. C. D.7.已知圓經(jīng)過點,且圓心為,則圓的方程為A. B.C. D.8.已知兩座燈塔和與海洋觀察站的距離都等于5,燈塔在觀察站的北偏東,燈塔在觀察站的南偏東,則燈塔與燈塔的距離為()A. B. C. D.9.某公司的班車在和三個時間點發(fā)車.小明在至之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過分鐘的概率是()A. B. C. D.10.如圖,某人在點處測得某塔在南偏西的方向上,塔頂仰角為,此人沿正南方向前進30米到達處,測得塔頂?shù)难鼋菫?,則塔高為()A.20米 B.15米 C.12米 D.10米二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線與相互垂直,且垂足為,則的值為______.12.已知實數(shù)滿足,則的最大值為_______.13.在中,,則_____________14.已知等比數(shù)列的首項為,公比為,其前項和為,下列命題中正確的是______.(寫出全部正確命題的序號)(1)等比數(shù)列單調遞增的充要條件是,且;(2)數(shù)列:,,,……,也是等比數(shù)列;(3);(4)點在函數(shù)(,為常數(shù),且,)的圖像上.15.已知數(shù)列中,且當時,則數(shù)列的前項和=__________.16.函數(shù)f(x)=coscos的最小正周期為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足:,,.(1)求、、;(2)求證:數(shù)列為等比數(shù)列,并求其通項公式;(3)求和.18.已知數(shù)列的前n項和為(),且滿足,().(1)求證是等差數(shù)列;(2)求數(shù)列的通項公式.19.在平面直角坐標系中,為坐標原點,三點滿足.(1)求證:三點共線;(2)已知的最小值為,求實數(shù)的值.20.如圖,在四棱錐中,,且,,,點在上,且.(1)求證:平面⊥平面;(2)求證:直線∥平面.21.為迎接世博會,要設計如圖的一張矩形廣告,該廣告含有大小相等的左中右三個矩形欄目,這三欄的面積之和為60000,四周空白的寬度為10cm,欄與欄之間的中縫空白的寬度為5cm,怎樣確定廣告矩形欄目高與寬的尺寸(單位:cm),能使整個矩形廣告面積最小.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】試題分析:因為直線:與直線:平行,所以或-2,又時兩直線重合,所以.考點:兩條直線平行的條件.點評:此題是易錯題,容易選C,其原因是忽略了兩條直線重合的驗證.2、C【解析】,則的終邊在三、四象限;則的終邊在三、一象限,,,同時滿足,則的終邊在三象限.3、B【解析】

以為坐標原點建立平面直角坐標系,設正方形邊長為,利用平面向量的坐標運算建立有關、的方程組,求出這兩個量的值,可得出的值.【詳解】以為坐標原點建立平面直角坐標系,設正方形邊長為,由此,,故,解得.故選B.【點睛】本題考查平面向量的線性運算,考查平面向量的基底表示,解題時也可以利用坐標法來求解,考查運算求解能力,屬于中等題.4、D【解析】

求出圓關于軸的對稱圓的圓心坐標A,以及半徑,然后求解圓A與圓的圓心距減去兩個圓的半徑和,即可求得的最小值,得到答案.【詳解】如圖所示,圓關于軸的對稱圓的圓心坐標,半徑為1,圓的圓心坐標為,,半徑為3,由圖象可知,當三點共線時,取得最小值,且的最小值為圓與圓的圓心距減去兩個圓的半徑之和,即,故選D.【點睛】本題主要考查了圓的對稱圓的方程的求解,以及兩個圓的位置關系的應用,其中解答中合理利用兩個圓的位置關系是解答本題的關鍵,著重考查了數(shù)形結合法,以及推理與運算能力,屬于基礎題.5、B【解析】f(x)=sin2x﹣cos2x=2sin(2x﹣)的圖象向左平移φ(0<φ<)個單位,得到g(x)=2sin(2x-2φ﹣).為偶函數(shù),故得到,故得到2sin(-2φ﹣)=-2或2,.因為,故得到,k=-1,的值為.故答案為B.6、A【解析】

利用當與直線垂直時,取最小值,并利用點到直線的距離公式計算出的最小值,然后利用勾股定理計算出、的最小值,最后利用三角形的面積公式可求出四邊形面積的最小值.【詳解】如下圖所示:由切線的性質可知,,,且,,當取最小值時,、也取得最小值,顯然當與直線垂直時,取最小值,且該最小值為點到直線的距離,即,此時,,四邊形面積的最小值為,故選A.【點睛】本題考查直線與圓的位置關系,考查切線長的計算以及四邊形的面積,本題在求解切線長的最小值時,要抓住以下兩點:(1)計算切線長應利用勾股定理,即以點到圓心的距離為斜邊,切線長與半徑為兩直角邊;(2)切線長取最小值時,點到圓心的距離也取到最小值.7、D【解析】

先計算圓半徑,然后得到圓方程.【詳解】因為圓經(jīng)過,且圓心為所以圓的半徑為,則圓的方程為.故答案選D【點睛】本題考查了圓方程,先計算半徑是解題的關鍵.8、B【解析】

根據(jù)題意畫出ABC的相對位置,再利用正余弦定理計算.【詳解】如圖所示,,,選B.【點睛】本題考查解三角形畫出相對位置是關鍵,屬于基礎題.9、A【解析】

根據(jù)題意得小明等車時間不超過分鐘的總的時間段,再由比值求得.【詳解】小明等車時間不超過分鐘,則他需在至到,或至到,共計分鐘,所以概率故選A.【點睛】本題考查幾何概型,關鍵找到滿足條件的時間段,屬于基礎題.10、B【解析】

設塔底為,塔高為,根據(jù)已知條件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【詳解】設塔底為,塔高為,故,由于,所以在三角形中,由余弦定理得,解得米.故選B.【點睛】本小題主要考查利用余弦定理解三角形,考查空間想象能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先由兩直線垂直,可求出的值,將垂足點代入直線的方程可求出的點,再將垂足點代入直線的方程可求出的值,由此可計算出的值.【詳解】,,解得,直線的方程為,即,由于點在直線上,,解得,將點的坐標代入直線的方程得,解得,因此,.故答案為:.【點睛】本題考查了由兩直線垂直求參數(shù),以及由兩直線的公共點求參數(shù),考查推理能力與計算能力,屬于基礎題.12、【解析】

根據(jù)約束條件,畫出可行域,目標函數(shù)可以看成是可行域內的點和的連線的斜率,從而找到最大值時的最優(yōu)解,得到最大值.【詳解】根據(jù)約束條件可以畫出可行域,如下圖陰影部分所示,目標函數(shù)可以看成是可行域內的點和的連線的斜率,因此可得,當在點時,斜率最大聯(lián)立,得即所以此時斜率為,故答案為.【點睛】本題考查簡單線性規(guī)劃問題,求目標函數(shù)為分式的形式,關鍵是要對分式形式的轉化,屬于中檔題.13、【解析】

先由正弦定理得到,再由余弦定理求得的值.【詳解】由,結合正弦定理可得,故設,,(),由余弦定理可得,故.【點睛】本題考查了正弦定理和余弦定理的運用,屬于基礎題.14、(3)【解析】

根據(jù)遞增數(shù)列的概念,以及等比數(shù)列的通項公式,充分條件與必要條件的概念,可判斷(1);令,為偶數(shù),可判斷(2);根據(jù)等比數(shù)列的性質,直接計算,可判斷(3);令,結合題意,可判斷(4),進而可得出結果.【詳解】(1)若等比數(shù)列單調遞增,則,所以或,故且不是等比數(shù)列單調遞增的充要條件;(1)錯;(2)若,為偶數(shù),則,,因等比數(shù)列中的項不為,故此時數(shù)列,,,……,不成等比數(shù)列;(2)錯;(3),所以(3)正確;(4)若,則,若點在函數(shù)的圖像上,則,因,,故不能對任意恒成立;故(4)錯.故答案為:(3)【點睛】本題主要考命題真假的判定,熟記等比數(shù)列的性質,以及等比數(shù)列的通項公式與求和公式即可,屬于??碱}型.15、【解析】

先利用累乘法計算,再通過裂項求和計算.【詳解】,數(shù)列的前項和故答案為:【點睛】本題考查了累乘法,裂項求和,屬于數(shù)列的??碱}型.16、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期為T==2三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3).【解析】

(1)直接帶入遞推公式即可(2)證明等于一個常數(shù)即可。(3)根據(jù)(2)的結果即可求出,從而求出?!驹斀狻浚?),,可得;,;(2)證明:,可得數(shù)列為公比為,首項為等比數(shù)列,即;(3)由(2)可得,.【點睛】本題主要考查了根據(jù)通項求數(shù)列中的某一項,以及證明是等比數(shù)列和求前偶數(shù)項和的問題,在這里主要用了分組求和的方法。18、(1)證明見解析;(2).【解析】

(1)當時,由代入,化簡得出,由此可證明出數(shù)列是等差數(shù)列;(2)求出數(shù)列的通項公式,可得出,由可得出在時的表達式,再對是否滿足進行檢驗,可得出數(shù)列的通項公式.【詳解】(1)當時,,,即,,等式兩邊同時除以得,即,因此,數(shù)列是等差數(shù)列;(2)由(1)知,數(shù)列是以為首項,以為公差的等差數(shù)列,,則.,得.不適合.綜上所述,.【點睛】本題考查等差數(shù)列的證明,同時也考查了數(shù)列通項公式的求解,解題的關鍵就是利用關系式進行計算,考查推理能力與計算能力,屬于中等題.19、(1)證明過程見解析;(2)【解析】試題分析:(1)只需證得即可。(2)由題意可求得的解析式,利用換元法轉換成,討論的單調性,可知其在上為單調減函數(shù),得可解得的值。(1)證明:三點共線.(2),,令,其對稱軸方程為在上是減函數(shù),。點睛:證明三點共線的方法有兩種:一、求出其中兩點所在直線方程,驗證第三點滿足直線方程即可;二、任取兩點構造兩個向量,證明兩向量共線即可。在考試中經(jīng)常采用第二種方法,便于計算。證明四點共線一般采用第一種方法。20、(1)見解析;(2)見解析【解析】

(1)通過邊長關系可知,所以,又,所以平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論