廣州市2025屆數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
廣州市2025屆數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
廣州市2025屆數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
廣州市2025屆數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
廣州市2025屆數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣州市2025屆數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,則k=()A.-3或-1 B.3或1 C.-3或1 D.-1或32.棱長都是1的三棱錐的表面積為()A. B. C. D.3.某市電視臺為調(diào)查節(jié)目收視率,想從全市3個縣按人口數(shù)用分層抽樣的方法抽取一個容量為的樣本,已知3個縣人口數(shù)之比為,如果人口最多的一個縣抽出60人,那么這個樣本的容量等于()A.96 B.120 C.180 D.2404.已知函數(shù)的最小正周期為,若,則的最小值為()A. B. C. D.5.在平面直角坐標系中,為坐標原點,為單位圓上一點,以軸為始邊,為終邊的角為,,若將繞點順時針旋轉(zhuǎn)至,則點的坐標為()A. B. C. D.6.關于的不等式的解集為()A. B. C. D.7.設的內(nèi)角,,的對邊分別為,,.若,,,且,則()A. B. C. D.8.我國古代數(shù)學名著九章算術記載:“芻甍者,下有袤有廣,而上有袤無丈芻,草也;甍,屋蓋也”翻譯為:“底面有長有寬為矩形,頂部只有長沒有寬為一條棱芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形則它的體積為A. B.160 C. D.649.已知,,下列不等式成立的是()A. B.C. D.10.已知,則().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知實數(shù)滿足則的最小值為__________.12.不等式的解集為_______________.13.兩平行直線與之間的距離為_______.14.在中,為上的一點,且,是的中點,過點的直線,是直線上的動點,,則_________.15.已知數(shù)列的通項公式為,數(shù)列的通項公式為,設,若在數(shù)列中,對任意恒成立,則實數(shù)的取值范圍是_________.16.用秦九韶算法求多項式當時的值的過程中:,__.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某廠每年生產(chǎn)某種產(chǎn)品萬件,其成本包含固定成本和浮動成本兩部分.已知每年固定成本為20萬元,浮動成本,.若每萬件該產(chǎn)品銷售價格為40萬元,且每年該產(chǎn)品產(chǎn)銷平衡.(1)設年利潤為(萬元),試求與的關系式;(2)年產(chǎn)量為多少萬件時,該廠所獲利潤最大?并求出最大利潤.18.已知等差數(shù)列滿足,.(1)求的通項公式;(2)各項均為正數(shù)的等比數(shù)列中,,,求的前項和.19.的內(nèi)角、、的對邊分別為、、,且.(Ⅰ)求角;(Ⅱ)若,且邊上的中線的長為,求邊的值.20.已知圓,圓與圓關于直線對稱.(1)求圓的方程;(2)過直線上的點分別作斜率為的兩條直線,使得被圓截得的弦長與被圓截得的弦長相等.(i)求的坐標;(ⅱ)過任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長是否恒相等,并說明理由.21.在平面直角坐標系中,已知A(-1,0),B(2,0),動點M(x,y)滿足MAMB=12,設動點(1)求動點M的軌跡方程,并說明曲線C是什么圖形;(2)過點1,2的直線l與曲線C交于E,F兩點,若|EF|=455(3)設P是直線x+y+8=0上的點,過P點作曲線C的切線PG,PH,切點為G,H,設C'(-2,0),求證:過

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

直接利用兩直線垂直的充要條件列方程求解即可.【詳解】因為直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故選C.【點睛】本題主要考查直線與直線垂直的充要條件,屬于基礎題.對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1)l1||l2?k12、A【解析】

三棱錐的表面積為四個邊長為1的等邊三角形的面積和,故,故選A.3、B【解析】

根據(jù)分層抽樣的性質(zhì),直接列式求解即可.【詳解】因為3個縣人口數(shù)之比為,而人口最多的一個縣抽出60人,則根據(jù)分層抽樣的性質(zhì),有,故選:B.【點睛】本題考查分層抽樣,解題關鍵是明確分層抽樣是按比例進行抽樣.4、A【解析】

由正弦型函數(shù)的最小正周期可求得,得到函數(shù)解析式,從而確定函數(shù)的最大值和最小值;根據(jù)可知和必須為最大值點和最小值點才能夠滿足等式;利用整體對應的方式可構(gòu)造方程組求得,;從而可知時取最小值.【詳解】由最小正周期為可得:,和分別為的最大值點和最小值點設為最大值點,為最小值點,當時,本題正確選項:【點睛】本題考查正弦型函數(shù)性質(zhì)的綜合應用,涉及到正弦型函數(shù)最小正周期和函數(shù)值域的求解;關鍵是能夠根據(jù)函數(shù)的最值確定和為最值點,從而利用整體對應的方式求得結(jié)果.5、C【解析】

由題意利用任意角的三角函數(shù)的定義,誘導公式,求得點的坐標.【詳解】為單位圓上一點,以軸為始邊,為終邊的角為,,若將繞點順時針旋轉(zhuǎn)至,則點的橫坐標為,點的縱坐標為,故點的坐標為.故選C.【點睛】本題主要考查任意角的三角函數(shù)的定義,誘導公式,考查基本的運算求解能力.6、B【解析】

將不等式化為,等價于,解出即可.【詳解】由原式得且,解集為,故選B.【點睛】本題考查分式不等式的解法,解分式不等式時,要求右邊化為零,等價轉(zhuǎn)化如下:;;;.7、B【解析】由余弦定理得:,所以,即,解得:或,因為,所以,故選B.考點:余弦定理.8、A【解析】

分析:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù)可得其體積.詳解:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù),求出棱錐與棱柱的體積相加即可,,故選A.點睛:本題利用空間幾何體的三視圖重點考查學生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側(cè)視圖,確定組合體的形狀.9、A【解析】

由作差法可判斷出A、B選項中不等式的正誤;由對數(shù)換底公式以及對數(shù)函數(shù)的單調(diào)性可判斷出C選項中不等式的正誤;利用指數(shù)函數(shù)的單調(diào)性可判斷出D選項中不等式的正誤.【詳解】對于A選項中的不等式,,,,,,,,A選項正確;對于B選項中的不等式,,,,,,,B選項錯誤;對于C選項中的不等式,,,,,,,即,C選項錯誤;對于D選項中的不等式,,函數(shù)是遞減函數(shù),又,所以,D選項錯誤.故選A.【點睛】本題考查不等式正誤的判斷,常見的比較大小的方法有:(1)比較法;(2)中間值法;(3)函數(shù)單調(diào)性法;(4)不等式的性質(zhì).在比較大小時,可以結(jié)合不等式的結(jié)構(gòu)選擇合適的方法來比較,考查推理能力,屬于中等題.10、C【解析】

分子分母同時除以,利用同角三角函數(shù)的商關系化簡求值即可.【詳解】因為,所以,于是有,故本題選C.【點睛】本題考查了同角三角函數(shù)的商關系,考查了數(shù)學運算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

本題首先可以根據(jù)題意繪出不等式組表示的平面區(qū)域,然后結(jié)合目標函數(shù)的幾何性質(zhì),找出目標函數(shù)取最小值所過的點,即可得出結(jié)果?!驹斀狻坷L制不等式組表示的平面區(qū)域如圖陰影部分所示,結(jié)合目標函數(shù)的幾何意義可知,目標函數(shù)在點處取得最小值,即?!军c睛】本題考查根據(jù)不等式組表示的平面區(qū)域來求目標函數(shù)的最值,能否繪出不等式組表示的平面區(qū)域是解決本題的關鍵,考查數(shù)形結(jié)合思想,是簡單題。12、【解析】.13、【解析】

先根據(jù)兩直線平行求出,再根據(jù)平行直線間的距離公式即可求出.【詳解】因為直線的斜率為,所以直線的斜率存在,,即,解得或.當時,,即,故兩平行直線的距離為.當時,,,兩直線重合,不符合題意,應舍去.故答案為:.【點睛】本題主要考查平行直線間的距離公式的應用,以及根據(jù)兩直線平行求參數(shù),屬于基礎題.14、【解析】

用表示出,由對應相等即可得出.【詳解】因為,所以解得得.【點睛】本題主要考查了平面向量的基本定理,以及向量的三角形法則,平面上任意不共線的一組向量可以作為一組基底.15、【解析】

首先分析題意,可知是取和中的最大值,且是該數(shù)列中的最小項,結(jié)合數(shù)列的單調(diào)性和數(shù)列的單調(diào)性可得出或,代入數(shù)列的通項公式即可求出實數(shù)的取值范圍.【詳解】由題意可知,是取和中的最大值,且是數(shù)列中的最小項.若,則,則前面不會有數(shù)列的項,由于數(shù)列是單調(diào)遞減數(shù)列,數(shù)列是單調(diào)遞增數(shù)列.,數(shù)列單調(diào)遞減,當時,必有,即.此時,應有,,即,解得.,即,得,此時;若,則,同理,前面不能有數(shù)列的項,即,當時,數(shù)列單調(diào)遞增,數(shù)列單調(diào)遞減,.當時,,由,即,解得.由,得,解得,此時.綜上所述,實數(shù)的取值范圍是.故答案為:.【點睛】本題考查利用數(shù)列的最小項求參數(shù)的取值范圍,同時也考查了數(shù)列中的新定義,解題的關鍵就是要分析出數(shù)列的單調(diào)性,利用一些特殊項的大小關系得出不等式組進行求解,考查分析問題和解決問題的能力,屬于難題.16、1【解析】

f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,進而得出.【詳解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,當x=2時,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案為:1.【點睛】本題考查了秦九韶算法,考查了推理能力與計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)產(chǎn)量(萬件)時,該廠所獲利潤最大為100萬元.【解析】

(1)由銷售收入減去成本可得利潤;(2)分段求出的最大值,然后比較可得.【詳解】(1)由題意;即;(2)時,,時,,當時,在是遞增,在上遞減,時,綜上,產(chǎn)量(萬件)時,該廠所獲利潤最大為100萬元.【點睛】本題考查函數(shù)模型的應用,根據(jù)所給函數(shù)模型求出函數(shù)解析式,然后由分段函數(shù)性質(zhì)分段求出最大值,比較后得出函數(shù)最大值.考查學生的應用能力.18、(1);(2).【解析】試題分析:(1)求{an}的通項公式,可先由a2=2,a5=8求出公差,再由an=a5+(n-5)d,求出通項公式;(2)設各項均為正數(shù)的等比數(shù)列的公比為q(q>0),利用等比數(shù)列的通項公式可求首項及公比q,代入等比數(shù)列的前n項和公式可求Tn.試題解析:(1)設等差數(shù)列{an}的公差為d,則由已知得∴a1=0,d=2.∴an=a1+(n-1)d=2n-2.(2)設等比數(shù)列{bn}的公比為q,則由已知得q+q2=a4,∵a4=6∴解得:q=2或q=-3.∵等比數(shù)列{bn}的各項均為正數(shù),∴q=2.∴{bn}的前n項和Tn===19、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)利用正弦定理和三角恒等變換的公式化簡即得;(Ⅱ)設,則,,由余弦定理得關于x的方程,解方程即得解.【詳解】(Ⅰ)由題意,∴,∴,則,∵,∴,∴;(Ⅱ)由(Ⅰ)知,又∵,∴,設,則,,在中,由余弦定理得:,即,解得,即.【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角恒等變換,意在考查學生對這些知識的理解掌握水平和分析推理能力.20、(1);(2)(i),(ii)見解析【解析】

(1)根據(jù)題意,將問題轉(zhuǎn)化為關于直線的對稱點即可得到,半徑不變,從而得到方程;(2)(i)設,由于弦長和距離都相等,故P到兩直線的距離也相等,利用點到線距離公式即可得到答案;(ⅱ)分別討論斜率不存在和為0三種情況分別計算對應弦長,故可判斷.【詳解】(1)設,因為圓與圓關于直線對稱,,則直線與直線垂直,中點在直線上,得解得所以圓.(2)(i)設的方程為,即;的方程為,即.因為被圓截得的弦長與被圓截得的弦長相等,且兩圓半徑相等,所以到的距離與到的距離相等,即,所以或.由題意,到直線的距離,所以不滿足題意,舍去,故,點坐標為.(ii)過點任作互相垂直的兩條直線分別與兩圓相交,所得弦長恒相等.證明如下:當?shù)男甭实扔?時,的斜率不存在,被圓截得的弦長與被圓截得的弦長都等于圓的半徑;當?shù)男甭什淮嬖?,的斜率等?時,與圓不相交,與圓不相交.當、的斜率存在且都不等于0,兩條直線分別與兩圓相交時,設、的方程分別為,即.因為到的距離,到的距離,所以到的距離與到的距離相等.所以圓與圓的半徑相等,所以被圓截得的弦長與被圓截得的弦長恒相等.綜上所述,過點任作互相垂直的兩條直線分別與兩圓相交,所得弦長恒相等.【點睛】本題主要考查點的對稱問題,直線與圓的位置關系,計算量較大,意在考查學生的轉(zhuǎn)化能力,計算能力,難度中等.21、(1)動點M的軌跡方程為(x+2)2+y2=4,曲線C是以(-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論