2025屆吉林省農(nóng)安縣普通高中數(shù)學高一下期末綜合測試試題含解析_第1頁
2025屆吉林省農(nóng)安縣普通高中數(shù)學高一下期末綜合測試試題含解析_第2頁
2025屆吉林省農(nóng)安縣普通高中數(shù)學高一下期末綜合測試試題含解析_第3頁
2025屆吉林省農(nóng)安縣普通高中數(shù)學高一下期末綜合測試試題含解析_第4頁
2025屆吉林省農(nóng)安縣普通高中數(shù)學高一下期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆吉林省農(nóng)安縣普通高中數(shù)學高一下期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,滿足約束條件,則目標函數(shù)的最大值是()A.3 B. C.1 D.2.已知扇形的周長為8,圓心角為2弧度,則該扇形的面積為()A. B. C. D.3.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.4.如圖,為正三角形,,,則多面體的正視圖(也稱主視圖)是A. B. C. D.5.三角函數(shù)是刻畫客觀世界周期性變化規(guī)律的數(shù)學模型,單位圓定義法是任意角的三角函數(shù)常用的定義方法,是以角度(數(shù)學上最常用弧度制)為自變量,任意角的終邊與單位圓交點坐標為因變量的函數(shù).平面直角坐標系中的單位圓指的是平面直角坐標系上,以原點為圓心,半徑為單位長度的圓.問題:已知角的終邊與單位圓的交點為,則()A. B. C. D.6.在0°到360°范圍內(nèi),與角-130°終邊相同的角是()A.50° B.130° C.170° D.230°7.已知點,則向量()A. B. C. D.8.如圖是一個幾何體的三視圖,它對應的幾何體的名稱是()A.棱臺 B.圓臺 C.圓柱 D.圓錐9.在正項等比數(shù)列中,,為方程的兩根,則()A.9 B.27 C.64 D.8110.在平面直角坐標系xOy中,直線的傾斜角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設三棱錐滿足,,則該三棱錐的體積的最大值為____________.12.如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.①存在點,使得//平面;②對于任意的點,平面平面;③存在點,使得平面;④對于任意的點,四棱錐的體積均不變.13.某空間幾何體的三視圖如圖所示,則該幾何體的體積為________14.已知數(shù)列是等差數(shù)列,若,,則公差________.15.200名職工年齡分布如圖所示,從中隨機抽取40名職工作樣本,采用系統(tǒng)抽樣方法,按1~200編號,分為40組,分別為1~5,6~10,…,196~200,若第5組抽取號碼為22,則第8組抽取號碼為________.若采用分層抽樣,40歲以下年齡段應抽取________人.16.已知向量,.若向量與垂直,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在等差數(shù)列中,(Ⅰ)求通項;(Ⅱ)求此數(shù)列前30項的絕對值的和.18.已知向量的夾角為60°,且.(1)求與的值;(2)求與的夾角.19.如圖所示,已知的斜邊長,現(xiàn)以斜邊橫在直線為軸旋轉(zhuǎn)一周,得到旋轉(zhuǎn)體.(1)當時,求此旋轉(zhuǎn)體的體積;(2)比較當,時,兩個旋轉(zhuǎn)體表面積的大?。?0.在平面直角坐標系中,的頂點、,邊上的高線所在的直線方程為,邊上的中線所在的直線方程為.(1)求點B到直線的距離;(2)求的面積.21.已知數(shù)列,.(1)記,證明:是等比數(shù)列;(2)當是奇數(shù)時,證明:;(3)證明:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

作出不等式組對應的平面區(qū)域,結合圖形找出最優(yōu)解,從而求出目標函數(shù)的最大值.【詳解】作出不等式組對應的平面區(qū)域,如陰影部分所示;平移直線,由圖像可知當直線經(jīng)過點時,最大.,解得,即,所以的最大值為1.故答案為選C【點睛】本題給出二元一次不等式組,求目標函數(shù)的最大值,著重考查二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃,也考查了數(shù)形結合的解題思想方法,屬于基礎題.2、A【解析】

利用弧長公式、扇形的面積計算公式即可得出.【詳解】設此扇形半徑為r,扇形弧長為l=2r則2r+2r=8,r=2,∴扇形的面積為r=故選A【點睛】本題考查了弧長公式、扇形的面積計算公式,屬于基礎題.3、B【解析】

該幾何體由上下兩部分組成的,上面是一個圓錐,下面是一個正方體,由體積公式直接求解.【詳解】該幾何體由上下兩部分組成的,上面是一個圓錐,下面是一個正方體.∴該幾何體的體積V64.故選:B.【點睛】本題考查了正方體與圓錐的組合體的三視圖還原問題及體積計算公式,考查了推理能力與計算能力,屬于基礎題.4、D【解析】

為三角形,,平面,

且,則多面體的正視圖中,

必為虛線,排除B,C,

說明右側高于左側,排除A.,故選D.5、A【解析】

先求出和的值,再根據(jù)誘導公式即可得解.【詳解】因為角的終邊與單位圓的交點為,所以,,則.故選:A.【點睛】本題考查任意角三角函數(shù)值的求法,考查誘導公式的應用,屬于基礎題,6、D【解析】

先表示與角-130°終邊相同的角,再在0°到360°范圍內(nèi)確定具體角,最后作選擇.【詳解】因為與角-130°終邊相同的角為,所以,因此選D.【點睛】本題考查終邊相同的角,考查基本分析判斷能力,屬基本題.7、D【解析】

利用終點的坐標減去起點的坐標,即可得到向量的坐標.【詳解】∵點,,∴向量,,.故選:D.【點睛】本題考查向量的坐標表示,考查運算求解能力,屬于基礎題.8、B【解析】

直接由三視圖還原原幾何體得答案.【詳解】解:由三視圖還原原幾何體如圖,該幾何體為圓臺.故選:.【點睛】本題考查三視圖,關鍵是由三視圖還原原幾何體,屬于基礎題.9、B【解析】

由韋達定理得,再利用等比數(shù)列的性質(zhì)求得結果.【詳解】由已知得是正項等比數(shù)列本題正確選項:【點睛】本題考查等比數(shù)列的三項之積的求法,關鍵是對等比數(shù)列的性質(zhì)進行合理運用,屬于基礎題.10、B【解析】

設直線的傾斜角為,,,可得,解得.【詳解】設直線的傾斜角為,,.,解得.故選:B.【點睛】本題考查直線的傾斜角與斜率之間的關系、三角函數(shù)求值,考查推理能力與計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

取中點,連,可證平面,,要使最大,只需求最大值,即可求解.【詳解】取中點,連,所以,,,平面,平面,設中邊上的高為,,當且僅當時,取等號.故答案為:.【點睛】本題考查錐體的體積計算,考查線面垂直的判定,屬于中檔題.12、①②④【解析】

根據(jù)線面平行和線面垂直的判定定理,以及面面垂直的判定定理和性質(zhì)分別進行判斷即可.【詳解】①當為棱上的一中點時,此時也為棱上的一個中點,此時//,滿足//平面,故①正確;②連結,則平面,因為平面,所以平面平面,故②正確;③平面,不可能存在點,使得平面,故③錯誤;④四棱錐的體積等于,設正方體的棱長為1.∵無論、在何點,三角形的面積為為定值,三棱錐的高,保持不變,三角形的面積為為定值,三棱錐的高為,保持不變.∴四棱錐的體積為定值,故④正確.故答案為①②④.【點睛】本題主要考查空間直線和平面平行或垂直的位置關系的判斷,解答本題的關鍵正確利用分割法求空間幾何體的體積的方法,綜合性較強,難度較大.13、2【解析】

根據(jù)三視圖還原幾何體,為一個底面是直角梯形的四棱錐,根據(jù)三視圖的數(shù)據(jù),分別求出其底面積和高,求出體積,得到答案.【詳解】由三視圖還原幾何體如圖所示,幾何體是一個底面是直角梯形的四棱錐,由三視圖可知,其底面積為,高所以幾何體的體積為.故答案為.【點睛】本題考查三視圖還原幾何體,求四棱錐的體積,屬于簡單題.14、1【解析】

利用等差數(shù)列的通項公式即可得出.【詳解】設等差數(shù)列公差為,∵,,∴,解得=1.故答案為:1.【點睛】本題考查了等差數(shù)列的通項公式,考查了計算能力,屬于基礎題.15、371【解析】

由系統(tǒng)抽樣,編號是等距出現(xiàn)的規(guī)律可得,分層抽樣是按比例抽取人數(shù).【詳解】第8組編號是22+5+5+5=37,分層抽樣,40歲以下抽取的人數(shù)為50%×40=1(人).故答案為:37;1.【點睛】本題考查系統(tǒng)抽樣和分層抽樣,屬于基礎題.16、7【解析】

由與垂直,則數(shù)量積為0,求出對應的坐標,計算即可.【詳解】,,,又與垂直,故,解得,解得.故答案為:7.【點睛】本題考查通過向量數(shù)量積求參數(shù)的值.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)765【解析】試題分析:(Ⅰ)由題意可得:進而得到數(shù)列通項公式為;(Ⅱ)由(Ⅰ)可得當時,,所以采用分組求和即可試題解析:(Ⅰ)∵即.∴.∴.(Ⅱ)由,則.∴=.考點:1.求數(shù)列通項公式;2.數(shù)列求和18、(1),;(2).【解析】

(1)根據(jù),即可得解;(2)根據(jù)公式計算求解.【詳解】(1)由題向量的夾角為60°,所以,,;(2),所以【點睛】此題考查平面向量數(shù)量積,根據(jù)定義計算兩個向量的數(shù)量積,求向量的模長和根據(jù)數(shù)量積與模長關系求向量夾角.19、(1);(2)見解析.【解析】

(1)根據(jù)旋轉(zhuǎn)體的形狀,可利用兩個圓錐的體積和得到所求(2)分別計算兩個圓錐的側面積求和即可.【詳解】沿斜邊所在直線旋轉(zhuǎn)一周即得到如圖所示的旋轉(zhuǎn)體.∵,,∴,,,∴.(2)當,其表面積;當,其表面積.通過計算知,,∴.【點睛】本題主要考查了旋轉(zhuǎn)體的形成,圓錐的體積、面積求法,屬于中檔題.20、(1)(2)【解析】

(1)由題意求得所在直線的斜率再由直線方程點斜式求的方程,然后利用點到直線的距離公式求解;(2)設的坐標,由題意列式求得的坐標,再求出,代入三角形面積公式求解.【詳解】(1)由題意,,直線的方程為,即.點到直線的距離;(2)設,則的中點坐標為,則,解得,即,.的面積.【點睛】本題考查點到直線的距離公式的應用,考查點關于直線的對稱點的求法,是基礎題.21、(1)見解析;(2)見解析;(3)見解析【解析】

(1)對遞推關系進行變形得,從而證明是等比

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論