河北省博野縣2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第1頁
河北省博野縣2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第2頁
河北省博野縣2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第3頁
河北省博野縣2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第4頁
河北省博野縣2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北省博野縣2025屆高一數(shù)學第二學期期末達標檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.計算:A. B. C. D.2.記復數(shù)的虛部為,已知滿足,則為()A. B. C.2 D.3.如圖,給出的是的值的一個程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A. B. C. D.4.在平面直角坐標系中,為坐標原點,為單位圓上一點,以軸為始邊,為終邊的角為,,若將繞點順時針旋轉(zhuǎn)至,則點的坐標為()A. B. C. D.5.公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.126.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則7.已知非零向量、,“函數(shù)為偶函數(shù)”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件8.函數(shù)的定義域為()A. B. C. D.9.已知是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3 C.6 D.10.若點共線,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在四面體ABCD中,平面ABC,,,若四面體ABCD的外接球的表面積為,則四面體ABCD的體積為_______.12.已知扇形的半徑為6,圓心角為,則該扇形的面積為_______.13.已知實數(shù)滿足,則的最小值為_______.14.已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=_______15.在平面直角坐標系中,經(jīng)過三點(0,0),(1,1),(2,0)的圓的方程為__________.16.當函數(shù)取得最大值時,=__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,且,記數(shù)列的前項和為,數(shù)列的前項和為.(1)若,求序數(shù)的值;(2)若數(shù)列的公差,求數(shù)列的公比及.18.已知,.(1)求及的值;(2)求的值.19.已知函數(shù)為奇函數(shù).(1)求實數(shù)的值并證明函數(shù)的單調(diào)性;(2)解關(guān)于不等式:.20.某校為了了解甲、乙兩班的數(shù)學學習情況,從兩班各抽出10名學生進行數(shù)學水平測試,成績?nèi)缦?單位:分):甲班:82848589798091897974乙班:90768681848786828583(1)求兩個樣本的平均數(shù);(2)求兩個樣本的方差和標準差;(3)試分析比較兩個班的學習情況.21.已知數(shù)列的前項和,函數(shù)對任意的都有,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)若數(shù)列滿足,是數(shù)列的前項和,是否存在正實數(shù),使不等式對于一切的恒成立?若存在請求出的取值范圍;若不存在請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)正弦余弦的二倍角公式化簡求解.【詳解】,故選A.【點睛】本題考查三角函數(shù)的恒等變化,關(guān)鍵在于尋找題目與公式的聯(lián)系.2、A【解析】

根據(jù)復數(shù)除法運算求得,從而可得虛部.【詳解】由得:本題正確選項:【點睛】本題考查復數(shù)虛部的求解問題,關(guān)鍵是通過復數(shù)除法運算得到的形式.3、B【解析】試題分析:由題意得,執(zhí)行上式的循環(huán)結(jié)構(gòu),第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;,第次循環(huán):,此時終止循環(huán),輸出結(jié)果,所以判斷框中,添加,故選B.考點:程序框圖.4、C【解析】

由題意利用任意角的三角函數(shù)的定義,誘導公式,求得點的坐標.【詳解】為單位圓上一點,以軸為始邊,為終邊的角為,,若將繞點順時針旋轉(zhuǎn)至,則點的橫坐標為,點的縱坐標為,故點的坐標為.故選C.【點睛】本題主要考查任意角的三角函數(shù)的定義,誘導公式,考查基本的運算求解能力.5、C【解析】

由開始,按照框圖,依次求出s,進行判斷?!驹斀狻?,故選C.【點睛】框圖問題,依據(jù)框圖結(jié)構(gòu),依次準確求出數(shù)值,進行判斷,是解題關(guān)鍵。6、D【解析】

根據(jù)各選項的條件及結(jié)論,可畫出圖形或想象圖形,再結(jié)合平行、垂直的判定定理即可找出正確選項.【詳解】選項A錯誤,同時和一個平面平行的兩直線不一定平行,可能相交,可能異面;選項B錯誤,兩平面平行,兩平面內(nèi)的直線不一定平行,可能異面;選項C錯誤,一個平面內(nèi)垂直于兩平面交線的直線,不一定和另一平面垂直,可能斜交;選項D正確,由,便得,又,,即.故選:D.【點睛】本題考查空間直線位置關(guān)系的判定,這種位置關(guān)系的判斷題,可以舉反例或者用定理簡單證明,屬于基礎(chǔ)題.7、C【解析】

根據(jù),求出向量的關(guān)系,再利用必要條件和充分條件的定義,即可判定,得到答案.【詳解】由題意,函數(shù),又為偶函數(shù),所以,則,即,可得,所以,若,則,所以,則,所以函數(shù)是偶函數(shù),所以“函數(shù)為偶函數(shù)”是“”的充要條件.故選C.【點睛】本題主要考查了向量的數(shù)量積的運算,函數(shù)奇偶性的定義及其判定,以及充分條件和必要條件的判定,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、A【解析】

根據(jù)對數(shù)函數(shù)的定義域直接求解即可.【詳解】由題知函數(shù),所以,所以函數(shù)的定義域是.故選:A.【點睛】本題考查了對數(shù)函數(shù)的定義域的求解,屬于基礎(chǔ)題.9、C【解析】

利用橢圓和雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案.【詳解】設(shè)橢圓長軸,雙曲線實軸,由題意可知:,又,,兩式相減,可得:,,.,,當且僅當時等立,的最小值為6,故選:C.【點睛】本題考查了橢圓雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示是解題的關(guān)鍵,意在考查學生的計算能力.10、A【解析】

通過三點共線轉(zhuǎn)化為向量共線,即可得到答案.【詳解】由題意,可知,又,點共線,則,即,所以,故選A.【點睛】本題主要考查三點共線的條件,難度較小.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

易得四面體為長方體的一角,再根據(jù)長方體體對角線等于外接球直徑,再利用對角線公式求解即可.【詳解】因為四面體中,平面,且,.故四面體是以為一個頂點的長方體一角.設(shè)則因為四面體的外接球的表面積為,設(shè)其半徑為,故.解得.故四面體的體積.故答案為:【點睛】本題主要考查了長方體一角的四面體的外接球有關(guān)問題,需要注意長方體體對角線等于外接球直徑.屬于中檔題.12、【解析】

用弧度制表示出圓心角,然后根據(jù)扇形面積公式計算出扇形的面積.【詳解】圓心角為對應(yīng)的弧度為,所以扇形的面積為.故答案為:【點睛】本小題主要考查角度制和弧度制互化,考查扇形面積的計算,屬于基礎(chǔ)題.13、【解析】

實數(shù)滿足表示點在直線上,可以看作點到原點的距離,最小值是原點到直線的距離,根據(jù)點到直線的距離公式求解.【詳解】因為實數(shù)滿足=1所以表示直線上點到原點的距離,故的最小值為原點到直線的距離,即,故的最小值為1.【點睛】本題考查點到點,點到直線的距離公式,此題的關(guān)鍵在于的最小值所表示的幾何意義的識別.14、-1【解析】

分n為偶數(shù)和奇數(shù)求得數(shù)列的奇數(shù)項和偶數(shù)項均為等差數(shù)列,然后利用分組求和得答案.【詳解】若n為偶數(shù),則an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶數(shù)項為首項為a2=﹣5,公差為﹣4的等差數(shù)列;若n為奇數(shù),則an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇數(shù)項為首項為a1=3,公差為4的等差數(shù)列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案為:1.【點睛】本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓練了等差數(shù)列前n項和的求法,是中檔題.15、【解析】分析:由題意利用待定系數(shù)法求解圓的方程即可.詳解:設(shè)圓的方程為,圓經(jīng)過三點(0,0),(1,1),(2,0),則:,解得:,則圓的方程為.點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式.16、【解析】

利用輔助角將函數(shù)利用兩角差的正弦公式進行化簡,求得函數(shù)取得最大值時的與的關(guān)系,從而求得,,可得結(jié)果.【詳解】因為函數(shù),其中,,當時,函數(shù)取得最大值,此時,∴,,∴故答案為【點睛】本題考查了兩角差的正弦公式的逆用,著重考查輔助角公式的應(yīng)用與正弦函數(shù)的性質(zhì),屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】

(1)先設(shè)等差數(shù)列的公差為,根據(jù)題中條件,求出公差,再由通項公式,得到,即可求出結(jié)果;(2)先由題意求出,得到等比數(shù)列的公比,再由等比數(shù)列的求和公式,即可得出結(jié)果.【詳解】(1)設(shè)等差數(shù)列的公差為,因為,,所以,解得:;又,所以,即,解得:;(2)因為數(shù)列的公差,,所以;因此等比數(shù)列的公比為,所以其前項和為.【點睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合,熟記通項公式與求和公式即可,屬于??碱}型.18、(1),;(2).【解析】

(1)由已知,,利用,可得的值,再利用及二倍角公式,分別求得及的值;(2)利用倍角公式、誘導公式,可得原式的值為.【詳解】(1)因為,,所以,所以,.(2)原式【點睛】若三個中,只要知道其中一個,則另外兩個都可求出,即知一求二.19、(1)2,證明見解析(2)【解析】

(1)由函數(shù)為奇函數(shù),得,化簡得,所以,.再轉(zhuǎn)化函數(shù)為,由定義法證明單調(diào)性.(2)將可化為,構(gòu)造函數(shù),再由在上是單調(diào)遞增函數(shù)求解.【詳解】(1)根據(jù)題意,因為函數(shù)為奇函數(shù),所以,即,即,即,化簡得,所以.所以,證明:任取且,則因為,所以,,,,所以∴,所以在上單調(diào)遞增;(2)可化為,設(shè)函數(shù),由(1)可知,在上也是單調(diào)遞增,所以,即,解得.【點睛】本題主要考查了函數(shù)的單調(diào)性和奇偶性的應(yīng)用,還考查了運算求解的能力,屬于中檔題.20、(1),;(2),,;(3)乙班的總體學習情況比甲班好【解析】試題分析:每組樣本數(shù)據(jù)有10個,求樣本的平均數(shù)利用平均數(shù)公式,10個數(shù)的平均數(shù)等于這10個數(shù)的和除以10;比較平均分的大小可以看出兩個班學生平均水平的高低,求樣本的方差只需使用方差公式,求這10個數(shù)與平均數(shù)的差的平方方和再除以10;比較兩組數(shù)據(jù)方差的大小就可得出兩組數(shù)據(jù)的標準差的大小,標準差較小者成績較穩(wěn)定。試題解析:(1)=×(82+1+85+89+79+80+91+89+79+74)=83.2,=×(90+76+86+81+1+87+86+82+85+83)=1.(2)=×[(82-83.2)2+(1-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36,=[(90-1)2+(76-1)2+(86-1)2+(81-1)2+(1-1)2+(87-1)2+(86-1)2+(82-1)2+(85-1)2+(83-1)2]=13.2,則s甲=≈5.13,s乙=≈3.2.(3)由于,則甲班比乙班平均水平低.由于,則甲班沒有乙班穩(wěn)定.所以乙班的總體學習情況比甲班好【點睛】怎樣求樣本的平均數(shù),n個數(shù)的平均數(shù)等于這n個數(shù)的和除以n;比較平均數(shù)的大小可以看出兩個樣本平均水平的高低,怎樣求樣本的方差,就是求這n個數(shù)與平均數(shù)的差的平方方和再除以n;比較兩組數(shù)據(jù)方差的大小就可得出兩組數(shù)據(jù)的標準差的大小,標準差較小者成績較穩(wěn)定。21、(1),;(2).【解析】分析:(1)利用的關(guān)系,求解;倒序相加求。(2)先用錯位相減求,分離參數(shù),使得對于一切的恒成立,轉(zhuǎn)化為求的最值。詳解:(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論